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H I G H L I G H T S

c We model the growth of root systems using density functions on deformable domains.
c Growth is modelled using PDE and root trajectories are used to deform the domain.
c We showed root domains can be predicted using developmentally meaningful parameters.
c Deformable domains are computationally efficient and can be used in population models.
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a b s t r a c t

Models of root systems are essential tools to understand how crops access and use soil resources during

their development. However, scaling up such models to field scale remains a great challenge.

In this paper, we detail a new approach to compute the growth of root systems based on density

distribution functions. Growth was modelled as the dynamics of root apical meristems, using Partial

Differential Equations. Trajectories of root apical meristems were used to deform root domains, the bounded

support of root density functions, and update density distributions at each time increment of the simulation.

Our results demonstrate that it is possible to predict the growth of root domains, by including

developmentally meaningful parameters such as root elongation rate, gravitropic rate and branching rate.

Models of this type are computationally more efficient than state-of-the-art finite volume methods. At a

given prediction accuracy, computational time is over 10 times quicker; it allowed deformable models to be

used to simulate ensembles of interacting plants. Application to root competition in crop–weed systems is

demonstrated.

The models presented in this study indicate that similar approaches could be developed to model shoot

or whole plant processes with potential applications in crop and ecological modelling.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Plant architectures are involved in key biological and environ-
mental processes (Fourcaud et al., 2008). Root architectures in
particular are optimised to capture and assimilate large amounts
of water and mineral elements from the soil, thereby contributing to
crop yield and effective food production (Lynch, 2007). Root
architectures also protect soils against erosion and other forms of
land degradation (Stokes et al., 2009). Due to their inherent multi-
functional nature, root architectures are difficult to understand
intuitively. Thus, models are of utmost importance to analyse the
complexity of root architectures and their functions.

Root architectures result from the organised expansion of a
multitude of apical meristems (root tips), which develop in a series

of elongation and initiation events. Current models use computer
simulations to mimic these processes. The geometry of roots and
their arrangement within the root system are assembled iteratively
from a set of virtual apical meristems, whose activities are simulated
independently from each other (Pag�es et al., 2004; Wu et al., 2007;
Lucas et al., 2011). Root architectural models can, in turn, be used to
make predictions on water and nutrient uptake by coupling growth
to physical models (Ge et al., 2000; Doussan et al., 2006; Zhang et al.,
2007; Wiegers et al., 2009).

Unfortunately, for root architectural models it has proved to be
difficult to define their parameters and assign them values
(Tsegaye et al., 1995). They also require sophisticated algorithms,
in order to be coupled to soil models (Draye et al., 2010; Leitner
et al., 2010). Simplified approaches, such as root density models,
could be used to overcome these shortcomings. Density-based
models aggregate root properties into root distribution functions.
Changes with time of density distribution functions can then be
modelled empirically, for example using sliding exponential
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profiles (Gerwitz and Page, 1974; King et al., 2003) or mechan-
istically using partial differential (Acock and Pachepsky, 1996;
Bastian et al., 2008). In the latter case, analytical methods can
provide simple growth functions (de Willigen et al., 2002;
Schnepf et al., 2008). Approximated numerical solutions can also
be obtained to analyse more complex systems (Reddy and
Pachepsky, 2001). However, density-based models were seldom
used to model ensembles of interacting plants. One remaining
challenge is to limit the number of unknowns in numerical
simulations, so that solutions can be obtained by standard desk-
top computers.

This paper presents a density-based approach to model
ensembles of root systems in the field. The root system is defined
as a deformable domain and density distribution functions are
used to model the distribution of roots within this domain. We
expanded the system of differential equations introduced in a
previous work (Dupuy et al., 2010), which proposed an Eulerian
solver, and developed a Lagrangian approach to solve equations
on 3D deformable grids. The performance of our solver was
compared to results obtained in a two-dimensional setting, where
the conservation equation could be solved analytically. Finally, a
simple case of crop–weed competition was studied to illustrate
applications to field-based crop processes.

2. Materials and methods

2.1. A density-based framework to model root systems dynamics

In this paper, the dynamic structure of the root system is
represented as a combination of density distribution functions,
following the principles proposed in a previous work (Dupuy
et al., 2010). First, root tip density (ra) indicates regions where
growth occurs. Secondly, root length density (rl) is defined as the
total root length per unit soil volume. Root length density is
required, for example, to predict water and nutrient uptake from
the soil (King et al., 2003). Finally, branching density (rb), defined as
the number of connections per unit soil volume, models the
topology of root connections. Root density distribution functions
are defined on domains that include both: (i) spatial coordinates
ðx,y,zÞ of roots in soil (Fig. 1A) and (ii) their direction of growth
(Fig. 1B), which is defined in a local spherical coordinate system,
more specifically gravitropic angle a and plagiotropic angle b (see
Fig. 1). A root and its growth direction are therefore characterised by
a point m in a 5-dimensional space m¼ ðx,y,z,a,bÞAE, E�R5

(Fig. 1C). In this setting, a root density distribution function is a
mapping r : E/R such that

R
O

R
VrdV dO represents the total

quantity of roots contained in volume V and whose growth direction

Fig. 1. Describing root systems with density distribution functions. (A) Root systems are characterised locally at point M¼ ðx,y,zÞ, by root densities (e.g. number of root tips

or total length of root per unit volume, here depicted by brown cylinders). (B) Root coordinates can also be expressed in a spherical coordinate system, so that the position

of roots M is defined by a radius and azimuth and zenith angles: M¼ ðr,y,jÞ. (C) Root orientation must complement root position, so that the expansion of the root system

can be predicted. The coordinate system is therefore expanded to record the direction of roots. Root direction in the spherical coordinate system is defined by inclination

and azimuth angles ða,bÞ. (D) A spherical coordinate system defines a local basis ður ,uh ,uuÞ, and hence allows the modelling of deformations of the root domain. (E) In a

Lagrangian setting, material coordinates of a reference state is defined at t ¼ 0, so that M¼ ðr,y,j,a,bÞ. The deformed state, which results from the growth of the root

system, is then expressed as a function of the reference state M¼ ðRðrÞ,y,j,AðaÞ,BðbÞÞ. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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