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a b s t r a c t

Much progress has been made in understanding the effect of periodic forcing on epidemiological and

ecological systems when that forcing acts on just one part of the system. Much less is known about

situations in which several parts of the system are affected. In this case the interaction between the

impacts of the different forcing components can lead to reinforcement of system responses or to their

interference. This interference phenomenon is significant if some forcing components are anthropo-

genic for then management might be able to exercise sufficient control to bring about suppression of

undesirable aspects of the forcing, for example resonant amplification and the problems this can cause.

We set out the algebraic theory when forcing is weak and illustrate by example what can happen when

forcing is strong enough to create subharmonics and chaotic states. Phase is the key control variable

that can bring about interference, advantageously shift nonlinear response curves and create periodic

states out of chaos. The phenomenon in which high period fluctuations appear to be generated by low

period forcing is examined and different mechanisms compared in a two-strain epidemiological model.

The effect of noise as a source of high period fluctuations is also considered.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Resonance occurs when a disproportionately large response is
produced through the excitation of one or more of the natural
oscillatory modes of a system by external periodic forcing.
Resonance is familiar in engineering systems where it can lead
to catastrophic structural failure. Its effect is also apparent in the
life sciences where it is thought to be the primary cause of many
periodic epidemics in plant, animal and human diseases. These
epidemics can have a serious negative impact on the balance of
species in wildlife ecologies and on public health. This connection
between epidemics and resonance was confirmed in the study of
childhood diseases in the 1980s (Dietz, 1982). Since then reso-
nance has been observed in a wide range of ecological and
epidemiological situations (Altizer et al., 2006), differing in the
period, strength and configuration of the external forcing and in
the dynamics of the unforced system.

Seasonality is the most familiar driver of external environ-
mental forcing, affecting both birth and death rates as well as
infection transmission and predation strength. Other environ-
mental drivers such as ENSO (i.e. El Nino Southern Oscillation)
and rain patterns in Africa and Asia (Wichmann et al., 2003) have

multiannual periods. Environmental forcing is not restricted to
such global or regional climate variations. For example, a species,
attempting to invade a resident community or web, will see that
community or web as the ‘‘environment’’ and will be subject to its
often long period fluctuations endogenously or exogenously
generated (Berryman, 1987; Dwyer et al., 2004).

The strength of forcing is also highly relevant in many forcing
situations. If forcing is strong enough, subharmonics can be
generated whereby the system populations oscillate with a period
that is an integer multiple of the forcing period. For example,
before vaccination programmes were introduced, measles epi-
demics occurred typically every 2 years (Dietz, 1982) even though
the forcing period is thought to be seasonal, following the rhythm
of the school year (Keeling et al., 2001). For even stronger forcing
the population fluctuations can become chaotic (Ireland et al.,
2004).

Also of importance is the configuration of the forcing, i.e. which
parts of the system are directly affected by the external forcing. For
childhood diseases seasonal forcing works predominantly through
infection transmission but in other cases other processes can be
targeted by the forcing as well. For example, for house finches
infected with bacterial conjunctivitis (Mycoplasma gallisepticum)
breeding occurs in the summer while outbreaks of the infection
usually occur in the fall and winter when there is social aggrega-
tion (Altizer et al., 2006; Hosseini et al., 2004). In contrast, for
harbour seals (Phoca vitulina) infected with the phocine distemper
virus, breeding and social aggregation occur at the same time,
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when the seals haul out (Altizer et al., 2006; Swinton et al., 1998).
When there are multiple components to the forcing they can
interact to reinforce responses or, alternatively, to bring about
interference between these responses. The spectrum of behaviour
from reinforcement to interference is the result of high sensitivity
of the amplitude of the population oscillations to the lags between
components. There is a half cycle lag in eco-epidemiological
systems if maximum predation is in the summer (e.g. the winter
spent in hibernation) and maximum prey infection occurs in the
winter (due to higher prey density). If instead predation is
constant, as it might be in the house finch ecosystem with
domestic cats as predators, then there would be a half cycle lag
between breeding and infection transmission.

An important case of multiple forcing is when some of the
components are the result of human activity. One example of this
is the periodic harvesting of a plant or animal population season-
ally driven and vulnerable to infection. Such an interaction
between anthropogenic and environmental forces can have unde-
sirable consequences if reinforcement rather than interference
takes place. Harvesting, for example, can increase the incidence
of infection (Choisy and Rohani, 2006). On the other hand, the
ability of management to manipulate some forcing components
suggests the possibility of controlling the system through ‘‘coun-
tercyclical’’ methods, using periodic forcing to offset the harmful
effects of the environmental forcing, for example, species extinc-
tion or large scale disease epidemics. Understanding when the
different components of the external forcing will lead to reinforce-
ment and when interference will result is therefore important.

We address this problem in this paper, studying the behaviour
of continuous-time models subject to multi-component periodic
external forcing. For weak forcing, when the system can be line-
arised, the analysis can be entirely algebraic. For stronger forcing,
we explore through simulation whether well chosen forcing lags
are still able to switch the system from reinforcement to inter-
ference when subharmonics and chaos are present.

Throughout the discussion the response curve for a system
population is used to visualise important aspects of the analysis. To
construct this curve the amplitude or the maximum (over a cycle)
of the chosen population is plotted against the forcing period p.
This is the ‘‘natural’’ way of studying resonance since resonance is
primarily concerned with the relationships between three different
periods, the forcing period itself, p, the period p1 of the populations
(in response to the forcing) and the (leading) natural period of the
unforced system p0. This natural period is the period of the damped
oscillatory path taken by the (assumed) overcompensating system
to bring the system back into equilibrium. This is the dynamical
state that is excited by the forcing to bring about resonance. In the
simplest cases this excitation shows up as a peak on the response
curve when the external and natural periods coincide. Period p0 is
related to and can be calculated from the imaginary part of the
leading complex eigenvalue of the Jacobian of the unforced system.
(In high dimensional systems there can be more than one natural
state that can be excited and hence more than one complex
Jacobian eigenvalue and more than one natural period. However,
the impact of such secondary excitation can be quite small.)

For definiteness we focus on resonant amplification in (eco-)
epidemiological systems. The problem is how to suppress the often
large scale epidemics that can periodically occur in a population
host to a pathogen. To study this problem we use the simplest non-
trivial model available, the SI model (S¼susceptible, I¼ infectious
population). It has a simple structure without explicit built in delays
(e.g. periods of latency or immunity) but is still liable to resonant
amplification. Management control will be exercised mostly through
host culling.

In the final part of the discussion we focus on one particular
feature of the SI model behaviour, the occurrence of seemingly

high period fluctuations in system populations when the external
forcing has low period. The introduction of a model describing the
dynamics of a pathogen with two strains shows that the mechan-
isms that produce high periodicity for the SI model may also work
in more complicated systems. As well, new ways of creating high
periodicity are explored, including noise excitation.

2. Multi-component forcing

2.1. The fundamentals

The SI epidemiological model is defined by the equations:

dS=dt¼ aH�sH2�bS�bSIþgI�c1PS ð1aÞ

dI=dt ¼ bSI�dI�c2PI ð1bÞ

dH=dt¼ rH�sH2�aI�c1PS�c2PI ð1cÞ

S; I; H¼Sþ I denotes the susceptible; infectious; total popula-
tion while a; b; r¼a�b measures per capita birth rate; mortality;
net growth rate at low population levels. Self-regulation is
introduced through the carrying capacity K, where s¼r/K. Para-
meter a; g; d¼bþaþg describes virulence; recovery rate; loss
rate from the infectious state while b is the infection transmission
constant. For the moment we take P¼0 explaining its significance
later. Eqs. (1b), (1c) with P¼0 and (1a) redundant define for us
Model 1.

To model periodic external forcing we will suppose that there
are two components, working through birth rate ‘a’ and infection
transmission ‘b’. Precisely

a¼ a0ð1þd1 cosðotÞÞ, b¼ b0ð1þd2 cosðotþfÞÞ ð2Þ

where a0, b0 are average values, d1, d2 the forcing strengths,
p¼2p/o the common forcing period and f the phase between
components. The phase can be interpreted as a lag of (�f/2p), so
if f¼�p/2 then b is lagging ‘a’ by a quarter cycle but if f¼þp/2
then ‘a’ is lagging b by a quarter cycle. Sinusoidal functions will be
used throughout to model periodicity because of the analytical
advantages of so doing and because the qualitative features of the
dynamics are usually not sensitive to the precise functional form
chosen (MacDonald, 2007).

With weak forcing (i.e. d1, d251) the model equations can be
linearised with explicit formulae given for the amplitudes of the
population oscillations (see Appendix B, (B9) and (B10)). These
amplitudes are written as a ratio with the denominator (complex)
zeros generating the resonance peaks and the numerator moder-
ating or distorting these peaks. If the numerator for one of the
populations becomes zero (for some value of the external period
p) then the oscillations for that population are eliminated entirely
and for all time (for that value of p) leaving the population at its
(unforced) equilibrium value. This is an important possibility with
significant policy implications.

The conditions for the numerator to be zero, when there are two
forcing components, are found algebraically in Appendix B (B7).
These are the conditions for the individual responses generated by
the two forcing components to have the same magnitude and to be
exactly out of phase, reflecting the fact that responses add in a linear
system. These two conditions relate the forcing period p, the phase
f and relative forcing strength y0¼d1/d2. Given one of these forcing
parameters, the zero amplitude conditions determine the values of
the other two if there exists a feasible solution with p positive,
which is not always the case.

To illustrate the zero numerator conditions (B7) we analyse
Model 1 with the parameters listed as set 1 in Appendix A. In
Fig. 1A with y0¼1.5 and f¼þp/2, we plot the response curve for
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