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a b s t r a c t

Gap formation and closure represent important disturbance events in forests, but the processes

involved are still poorly understood. We use models, which we and others previously developed, to

make long-term predictions of tropical forest gap dynamics based on Barro Colorado Island data. We

first fit the models to the data by comparing their discrete Fourier transforms, and we propose a

definition for the lifetime of a gap and predict a large-gap lifetime typically to be less than 50 years. We

find that the gap lifetime diverges logarithmically for large-gap sizes. We examine the ‘memory’ of

spatial gap patterns via spatiotemporal correlations and find a correlation time of about 160 years,

suggesting that present gap patterns could have long-lasting effects on forest spatial patterns.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, canopy gaps in rainforests have been con-
sidered to be one of the key factors involved in the recruitment and
growth of seedlings, and in the ability of these forests to support
their great diversity of species (Schnitzer and Carson, 2001; Zhu
et al., 2003; Menges et al., 2008). The study of gap dynamics in
ecology is not new (Watt, 1947), but still today ecologists continue
to question the mechanisms and patterns generated by gap dis-
turbances (e.g., Jansen et al., 2008; Kellner and Asner, 2009). As the
importance of canopy gap dynamics becomes better understood,
and data more readily available, models of these dynamics will
become increasingly useful to predict the effects of logging, climate
change, natural disasters, and other sources of disturbance.

Although several attempts to model rainforest gap dynamics have
been made (e.g., Kubo et al., 1996; Manrubia and Solé, 1997; Alonso
and Solé, 2000; Pagnutti et al., 2007), most studies analyze and fit
only current data and have had various degrees of success in doing so.
These models have, however, not been used to make long-term
predictions about forest gap dynamics. Indeed, Kubo et al. (1996)
derived the global and local densities of a stationary state of their
model. However, there are dynamical processes taking place on all
spatial scales within this stationary state. Although the gap densities

and distributions are stationary, the gap pattern changes with time.
These are the dynamics that interest us in this paper.

Pagnutti et al. (2007) introduced a model, called the transition
expansion model (TEM), capable of capturing the structure and
dynamics observed in the gap pattern on the Barro Colorado
Island (BCI) (Hubbell and Foster, 1986; Satake et al., 2004). Here
we use the TEM model to make long-term predictions about the
BCI gap dynamics that are not easily measured in the field due to
the time required to get reliable statistical data. More specifically,
we estimate the maturation time for a rainforest starting from a
state that is far from equilibrium, and propose a definition for the
lifetime of a gap, which we calculate as a function of the gap’s
initial size. To the best of our knowledge, no previous modelling
studies have given estimates of gap lifetimes. We note that the
gap lifetime is not equivalent to gap age (time since gap forma-
tion), which is a variable that is equally difficult to measure in the
field, particularly in tropical forests (Iwasa, 1995). We also
calculate a spatiotemporal correlation function that allows the
prediction of the amount of time for which the gap-gap correla-
tions persist at a given distance. We loosely refer to this amount
of time as the memory of the gap pattern.

2. Methods

2.1. Review of the TEM model

The TEM model is a cellular automaton that was designed to
reproduce the BCI gap dynamics. Cells are either gaps or non-gaps. At
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each time step, gaps may become non-gaps and non-gaps may
become gaps according to the rules specified below. The novel feature
of TEM is that it allows single-cell disturbances to propagate within a
single time step. TEM was shown to reproduce many different aspects
of the observed data with very good accuracy (Pagnutti et al., 2007).
In Section 2.2 we will offer yet another, albeit more powerful, fit of
the model to the data in the form of a discrete Fourier transform
(DFT). The excellent agreement between the TEM model results and
the BCI data gives credibility to the use of TEM (as compared to the
KIF model; Kubo et al., 1996) to make long-term predictions about
rainforest gap dynamics, which is the main purpose of this paper.

It is important to note that a gap is defined here, as in most
cases in ecology, as a relatively lower local average height of trees
in the canopy (Brokaw, 1982a). The BCI data provided by Hubbell
and Foster (1986) represents a two-dimensional horizonal slice of
the canopy, where gaps are areas with canopy height less than
20 m. The TEM and KIF models simulate the canopy dynamics
across this slice, so they are effective two-dimensional models.
The problem of modelling the full three-dimensional structure is
a much more challenging problem and will not be addressed
here. Solé et al. (2005) studied the gap-size distribution in the BCI
data for several slices taken at different heights, thereby probing
the three-dimensional canopy structure.

For convenience, we restate the rules of the TEM model here.
For more detail see Pagnutti et al. (2007). This model reads as:

(i) Gap formation: 1-0 occurs with probability dþnð0Þd=z,
where nð0Þ is the number of neighbouring cells in the gap
state, and z is the number of neighbouring cells. The para-
meter d initiate random gap formation events, and d
accounts for susceptibility to windthrow at gap edges.

(ii) Gap closure: 0-1 occurs with probability bþnð1Þb=z, where
nð1Þ is the number of neighbouring cells in the non-gap state.
The parameter b creates random gap closure events due to
vertical growth across the gap/non-gap height threshold, and
b accounts for the outward growth of mature trees.

(iii) Gap formation expansion: if a given cell ði,jÞ undergoes the
transition 1-0, then all of its non-gap neighbours undergo
the same transition with probability deþnð0Þde=z. Here nð0Þ is
calculated using the neighbourhood of the non-gap neigh-
bour of ði,jÞ.

(iv) Gap closure expansion: if a given cell undergoes the transi-
tion 0-1, then all of its gap neighbours undergo the same
transition with probability beþnð1Þbe=z. Rules (iii) and (iv)
account for the possibility that a single disturbance event
may affect an area larger than one cell.

Using this model we were able to fit many aspects of the observed
data (power-law scaling exponent of gap-size distributions, local and
global densities of gaps, spatial correlation function, neighbourhood
dependence of gap formation) provided that the parameters were set
equal to the values given in Table 1. Like in Pagnutti et al. (2007), we
will compare the results of the TEM model to those obtained using
the KIF model (Kubo et al., 1996), which is obtained by setting the
parameters to the values in Table 1. The values of these parameters
were chosen by coarsely scanning regions of the parameter spaces of
the models to find parameter values that roughly reproduce the gap-
size distribution, and the global and local densities of gaps, gap
closures and gap formations. Finer adjustments to the parameters
were made by trial and error to improve on the fits, and to reproduce
the other aspects of the data reported in Pagnutti et al. (2007). The
main difference between the TEM and KIF models is that, in KIF, rules
(iii) and (iv) are turned off, so it does not allow disturbance events to
propagate within a given time step. We also compare our results to a
NULL model, in which all local interactions are turned off. The
parameters used in the NULL model are given in Table 1. The values

for b and d were chosen to fit the power-law gap-size distribution as
well as the global density of gap formations and closures observed in
BCI. Note, however, that it is not possible to simultaneously fit the
gap-size distribution and gap density using the NULL model. We
compare these three models in order to observe the effects that the
strength of local interactions has on the spatiotemporal gap
dynamics.

2.2. Model fitting: discrete Fourier transform

Before we can use the TEM model to predict the spatiotem-
poral dynamics of the BCI gap pattern, we should ensure that it
can reproduce the short-term dynamics that have already been
observed. Pagnutti et al. (2007) used TEM to reproduce many
different aspects of the data. Here we offer another more power-
ful test of the fit of the model to the data: the DFT. In short, the
DFT transforms a spatial pattern into a spectrum of frequencies.
This spectrum, in a sense, quantifies the spatial structure of the
pattern. The DFT test for the fit of the model to the data offers
several advantages over those used previously (Kubo et al., 1996;
Manrubia and Solé, 1997; Satake et al., 2004; Pagnutti et al.,
2007). First, it allows us to compare the gap patterns as a whole,
rather than comparing very specific aspects of the data (e.g., the
global and local densities of gaps). Also, using the DFT we can
compare single snapshots of gap patterns and get good insight
into the patterns’ similarities and differences without resorting to
averaging over long times or over many configurations. Although
the averaging process is not difficult in a simulated environment,
it is not convenient when doing field observations due to the time
required in order to get good statistics. For this reason we think
that the DFT is the best way to check if simulation results fit the
field observations directly.

The DFT is defined by
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1
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where M and N are the numbers of cells along the length and
width of the map respectively, and f ðx,yÞ ¼ 1 for a gap at the cell
ðx,yÞ and zero otherwise, and i is the imaginary unit. The function
Fðk,lÞ is complex-valued, so it can be schematically represented as
F ¼ jFjeiy where r is the magnitude of F and y is its phase. The
phase of F is usually only required when one wishes to recon-
struct the original image from the DFT. Since we will not need to
reconstruct the original spatial images, we will only be interested
in the magnitude of F. To calculate the magnitude, simply replace
i with ð�iÞ in F to find the complex conjugate F�; the magnitude is
calculated as jFj �

ffiffiffiffiffiffiffiffi
F�F
p

. When we refer to the DFT, we will
always mean the magnitude of F, i.e. we use F � jFj and ignore
the phase altogether. The value of Fð0,0Þ turns out to be the global
density of gaps. This value has been calculated explicitly
in Pagnutti et al. (2007). Since it is by far the dominant compo-
nent of the DFT, it makes the remainder of the function look flat

Table 1
Parameter values used for the models.

TEM KIF NULL

d 0.003 0.008 0.146

d 0.221 0.353 0

b 0.003 0.008 0.100

b 0.336 0.370 0

de 0.005 0 0

de 0.400 0 0

be 0.011 0 0

be 0.210 0 0
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