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a b s t r a c t

Messenger RNA polyadenylation is one of the essential processing steps during eukaryotic gene

expression. The site of polyadenylation [(poly(A) site] marks the end of a transcript, which is also the

end of a gene. A computation program that is able to recognize poly(A) sites would not only prove

useful for genome annotation in finding genes ends, but also for predicting alternative poly(A) sites.

Features that define the poly(A) sites can now be extracted from the poly(A) site datasets to build such

predictive models. Using methods, including K-gram pattern, Z-curve, position-specific scoring matrix

and first-order inhomogeneous Markov sub-model, numerous features were generated and placed in an

original feature space. To select the most useful features, attribute selection algorithms, such as

information gain and entropy, were employed. A training model was then built based on the Bayesian

network to determine a subset of the optimal features. Test models corresponding to the training

models were built to predict poly(A) sites in Arabidopsis and rice. Thus, a prediction model, termed

Poly(A) site classifier, or PAC, was constructed. The uniqueness of the model lies in its structure in that

each sub-model can be replaced or expanded, while feature generation, selection and classification are

all independent processes. Its modular design makes it easily adaptable to different species or datasets.

The algorithm’s high specificity and sensitivity were demonstrated by testing several datasets and, at

the best combinations, they both reached 95%. The software package may be used for genome

annotation and optimizing transgene structure.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

After transcription from genomic DNA, precursor messenger
RNA (mRNA) needs to be processed before becoming functional in
eukaryotic cells. One of the essential processing event is the
addition of a polyadenine [poly(A)] track to a terminal nucleotide
of the 30-untranslated region (30-UTR). The location of this
terminal nucleotide, which is exposed after endonuclease clea-
vage, is known as a poly(A) site. Thus, a poly(A) site marks the end
of the transcribed mature mRNA, and, as such, it can be used to
find and annotate the end of a gene. Identification of poly(A) sites
also facilitates the search for genes that undergo alternative
polyadenylation, a significant mode of gene expression regulation
that is increasingly observed in animal and plant genes (Delaney
et al., 2006; Lutz, 2008; Quesada et al., 2005; Xing et al., 2008;
Zhang et al., 2005). Moreover, since there are instances where
foreign transgenes may carry unwanted poly(A) sites, the use of

such poly(A) sites during transgene expression may destroy the
function of the transgene in the target organisms (Diehn et al.,
1998). Thus, identification and elimination of these cryptic
poly(A) sites would be of interest in biotechnological applications.

The location of a poly(A) site for a gene is mostly predeter-
mined by the so-called polyadenylation signals. Traditionally,
poly(A) sites are identified by examining the expressed sequence
tags (ESTs) which are reverse transcribed from mature mRNA.
Since the poly(A) tail is added post-transcriptionally, alignment of
ESTs to their respective genomic sequences will reveal the
location of poly(A) sites. Indeed, there are number of datasets
with collections of poly(A) sites (Graber et al., 1999; Loke et al.,
2005; Shen et al., 2008a, b; Zhang et al., 2005). Further analysis of
these datasets have elucidated the poly(A) signals that determine
the poly(A) site locations at the genome level. Such information
about the poly(A) signals, particularly those from Arabidopsis
(Loke et al., 2005) and rice (Shen et al., 2008a), is the foundation of
our work which involves the construction of predictive models for
the systematic prediction of plant poly(A) sites.

The complexity of poly(A) sites is demonstrated by the fact
that poly(A) sites can be located in a short region of the 3’-UTR
(Li and Hunt, 1997; Loke et al., 2005; Shen et al., 2008a).
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Furthermore, plant poly(A) signals possess little conservation.
These properties, coupled with a limited knowledge of numerical
prediction and its application to plant polyadenylation, make it
hard to predict exact poly(A) sites using computational methods.
Therefore, to overcome these inherent obstacles to accurate plant
gene annotation and transgene design, we first developed a new,
modulated algorithm that is composed of three independent
components (feature generation, selection and classification) and
reaches maximum flexibility in its adaptation to new features.
Then, we employed these feature-selection algorithms to select a
relative best feature space that includes only effective features.
Finally, we built a recognition model, termed Poly(A) site
Classifier, or PAC, to effectively predict poly(A) sites.

2. Generation of signal feature space and poly(A) classifier

2.1. The datasets

A dataset of Arabidopsis 30-UTR of 8,160 poly(A) site entries,
which we termed the 8 K dataset, was described previously (Loke
et al., 2005). The poly(A) sites were authenticated by comparing
ESTs to the genomic sequences. After mapping ESTs to the
genome, coordinates of the poly(A) sites in the genomic
sequences were defined as the last nucleotide that matched to
the genome sequences. Then, the genomic sequences of 400
nucleotides (nt) in length, including 301 nt upstream to 99 nt
downstream of the poly(A) site, were extracted. Hence, the known
poly(A) site for each sequence was located at the 301st nt
(counting from left to right). The reason for the length of the
sequences was set to 400 nts was based on previous analysis
(Loke et al., 2005) where all poly(A) signals to determine the
poly(A) sites were included. In these operations, we used DNA
sequence in place of RNA, but there was no impact on modeling.
The rice dataset, which was generated in the same manner as
Arabidopsis, has been described elsewhere (Shen et al., 2008a). It
contains 55,000 annotated poly(A) sites, and we termed it the
55 K dataset. For the 8 K dataset of Arabidopsis, there are 6059
unique genes represented in the dataset. Among them, 78.6% of
them have only one poly(A) site, 15.7% have two sites, 3.5% have
three sites, and 2.2% have four or more sites. The majority of the
poly(A) sites (96% of 8160) were located in the 30-UTR as
expected, while 1.8% located in the introns (0.3%), coding
sequences (0.4%) and 50-UTR (1.1%), and 2.2% located in the
intergenic regions. For rice 55 K dataset, a total of 16,911 unique
genes were represented (Shen et al., 2008a); out of which, 49.0%
show only one poly(A) site, 24.1% have two sites, 13.2% have three
sites, and 13.6 have 4 or more sites. Among the 55 K poly(A) sites,
86.9% were found in the 30-UTR, 1.9% located in the introns
(0.93%), coding sequences (0.45%), and 50-UTR (0.54%), while
11.1% were located in the intergenic regions (Shen et al., 2008a).

To make the model suitable for variable poly(A) site recogni-
tion, the training datasets were derived from several different
kinds of sequences. A training dataset consisting of 487 (an
arbitrary number) positive sequences was randomly extracted
from the 8 K sequences (Ji et al., 2007a; Loke et al., 2005). A
negative training dataset consists of the following: 100 randomly
generated sequences that preserved the trinucleotide distribu-
tions in 30-UTR using the Markov Chain (hence, it is called MC);
100 50-UTRs,100 introns and 100 coding sequences of Arabidopsis
were extracted from the databases of the Arabidopsis Information
Resources (TAIR) as described previously (Ji et al., 2007a). The
sequences in the training dataset were trimmed into lengths of
162 nt each, the size of the scanning window. This window size
was based on the profile of Arabidopsis nucleotide sequence
distribution and polyadenylation signals around the poly(A) sites,

as we described before (Ji et al., 2007a; Loke et al., 2005), from
which it is reasonable to assume that each poly(A) site is only
correlated with the poly(A) signals upstream and downstream of
it. In this paper, a window sequence is defined as the sequence
containing 131 nt upstream and 31 nt downstream of a poly(A)
site (Loke et al., 2005); thus internal processing sliding window
sequence is 162 nt in length.

As another control, a negative training dataset consisting of
1100 sequences was randomly chosen from the 8 K dataset, each
extracted from sequences at least 10 nt beyond both sides of the
poly(A) site. Longer sequences (4162 nt) were cut into shorter
162 nt sequences for processing, and then the outputs were joined
together to reflect the outcome of the original sequences.

In order to evaluate the PAC prediction results, as described
below, the test datasets (different from the training datasets)
were made up of 35 long sequences [produced by merging some
of the 400 nt sequences from the dataset that come from the same
gene so to make longer sequences for Sn calculations; each of the
sequences thus would have multiple poly(A) sites] with 154
known multi-poly(A) sites and 100 each of the following types of
sequences (each 400 nt in length): randomly generated 30-UTRs
but preserved the original trinucleotide distribution, 50-UTRs,
introns and coding sequences of Arabidopsis, respectively.

2.2. Generation of signal feature space

When using a classification algorithm for predicting the
poly(A) sites, the nucleotide sequence needs to be converted into
numeric format. Consequently, the features of poly(A) signals
around the cleavage sites were extracted based on the profile of
nucleotide sequence distribution around the poly(A) sites in both
Arabidopsis and rice. To deal with complicated biological
problems by classifier models, single feature is not nearly enough,
so ensemble features are being increasingly used to construct
classifier (Chou and Shen, 2007; Frey et al., 2007; Kedarisetti et al.,
2006; Shen and Chou, 2006, 2009). In practical applications,
particularly in developing high throughput tools for predicting
various important attributes for biomacromolecules, many dif-
ferent descriptors to represent biological sequence samples have
been developed and widely used, such as those by means of
cellular automata image (Lin et al., 2009; Xiao et al., 2006, 2009,
2008b), those by complexity measure factor (Xiao et al., 2006,
2005), and those by grey dynamic model (Lin et al., 2009; Xiao
et al., 2008a), as well as many other feature representation
methods (Chou, 2009). Here, five feature representation methods
were adopted to describe the makeup of nucleotide sequences.
These methods were chosen to confirm whether each one could
generate unique features from different training datasets. Finally,
the numerical vector was used as the input of the classification
algorithm. The distribution of features in different areas of a
window sequence is shown in Fig. 1.

K-gram nucleotide sequence pattern: Given a K-gram
(a subsequence of K nucleotides) and a scanned region of length
L, the relative probability of this K-gram can be obtained by
scanning from the first to the last position (L�K+1) of the
scanning region (Liu et al., 2003). Using four mono-nucleotides
and sixteen di-nucleotides, we scanned upstream (�1��130 nt)
and downstream (+1� +32 nt, where the poly(A) site is defined at
�1 position) of the poly(A) sites to get 40 distinct mono-
nucleotide and di-nucleotide probabilities (each K-gram corre-
sponding to 2 probabilities) as a part of the initial feature space.

Z-Curve: the Z-curve (Zhang and Wang, 2000) is a three-
dimensional space curve reconstituting each unique DNA/RNA
sequence; thus, each sequence can be represented as a Z-curve, and
the sequence and Z-curve can be reconstituted from each other.
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