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a b s t r a c t 

This paper theoretically investigates the thermal behavior in a living biological tissue under various co- 

ordinate systems and different non-Fourier boundary conditions with the dual-phase-lag bioheat transfer 

model during thermal therapy. The properties of Legendre wavelets together with the finite difference 

scheme are used to find an approximate analytical solution of the present problem. It has been ob- 

served that surrounding healthy tissues are less affected in second and third kind of boundary condition 

when applied along with spherical symmetric coordinate system. Also greater temperature rise and fast 

achievement of peak hyperthermia temperature is achieved when second and third kind of boundary con- 

ditions are used in combination with Cartesian coordinate system. It is observed that due to the presence 

of blood perfusion and temperature dependent metabolic heat generation term, the dual-phase-lag bio- 

heat transfer model reduces to Pennes bioheat transfer model only when τq = τT = 0 s, not for arbitrary 

τq = τT . Further, in case of dual-phase-lag bioheat transfer model wave-like or diffusion-like behavior will 

dominate depends whether the ratio τ q / τ T > 1 or τ q / τ T < 1. Effect of temperature dependent metabolic 

heat generation rate, thermal conductivity and blood perfusion rate on dimensionless temperature are 

discussed in details. The whole analysis is presented in dimensionless form. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Thermal therapy, encompasses all therapeutic treatments of 

malignant diseases (cancerous cell) based on transfer of thermal 

energy into or out of the body by various ways (Electromag- 

netic radiation, Ultrasound, Radio-frequency, Microwaves, Infrared- 

radiation etc.). It is implemented as a minimally invasive alterna- 

tive to traditional surgery in the treatment of cancerous cell and 

benign diseases. In clinical setting, the major objective of thermal 

therapy is to obtain an effective treatment of cancerous cell with- 

out damaging surrounding healthy tissue. Depending on the de- 

gree of temperature rise and time to apply them, thermal therapy 

is classified by Habash et al. [1] into cryoablation ( T ≤ −50 o C for 

time > 10 min), long term low-temperature hyperthermia ( 40 o C ≤
T ≤ 41 o C for time 6–72 h.), moderate-temperature hyperthermia 

( 41 o C ≤ T ≤ 46 o C for time 15–60 min) and high-temperature or 

thermal ablation ( T ≥ 50 o C for time 4–6 min). In hyperthermia 

treatment, the increased temperature at the site of cancerous cell 

results in changed physiology of diseased cell, which leads to 
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necrosis or apoptosis. The extent of initial tissue necrosis depends 

on thermal energy applied to the tissue. Necrosis is marked by a 

passive pathological cell damage followed by an inflammatory re- 

sponse originating from the surrounding tissues whereas, apopto- 

sis represents a genetically controlled cell death. Hyperthermia is 

an adjuvant therapy means it is applied along with an already es- 

tablished therapy such as chemotherapy or radiotherapy. Therefore, 

hyperthermia improves the result of the conventional treatment 

within the framework of multi-modal treatment concepts. For the 

success of hyperthermia treatment, precise prediction and control 

of temperature are always needed [2–6] . Heat transfer analysis in 

living biological tissues is complex due to their non-homogeneous 

inner structure. It involves heat conduction in solid tissue matrix 

and blood vessels, convection between blood and tissue, perfusion 

through capillary tubes within the tissues, metabolic heat gener- 

ation and evaporation etc. Several bioheat transfer models have 

been developed in order to model this complex process [7–11] . 

But due to simplicity, Pennes bioheat transfer (PBHT) model is 

used most commonly for fast prediction of transient temperature 

profiles and interpretation of thermal data. The conduction term 

in the PBHT model is based on macroscopic heat diffusion theory 

as stipulated by classical Fourier’s law: 

q (r, t) = −k ∇T (r, t) . (1) 
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Nomenclature 

a antenna constant, m 

−1 

c specific heat of tissue, J kg −1 K 

−1 

c b specific heat of blood, J kg −1 K 

−1 

H heat transfer coefficient, W m 

−2 K 

−1 

k thermal conductivity of tissue, W m 

−1 K 

−1 

L length of tissue, m 

P antenna power, W 

q heat flux, Wm 

−2 

Q b heat source due to blood perfusion, W m 

−3 

Q m 

heat source due to metabolic heat generation, 

W m 

−3 

Q mo basal metabolic heat generation rate, W m 

−3 

Q r heat source due to absorbed electro-magnetic radi- 

ation, Wm 

−3 

r spatial coordinate of tissue, m 

r̄ distance of the tissue from the skin surface, m 

r p radius of the treatment probe, m 

t time, s 

T temperature of tissue, o C 

T b arterial blood temperature, o C 

T f fluid temperature, o C 

T o initial temperature, o C 

T w 

temperature of the vessel wall, o C 

V cv thermal wave propagation speed, m s −1 

Greek symbols 

� the number to classify coordinates ( � = 0 , 1 , 2 ) 

ρ density of tissue, kg m 

−3 

ω b perfusion rate of blood, kg m 

−3 s −1 

τ q phase lag of heat flux, s 

τ T phase lag of temperature gradient, s 

Dimensionless variable and similarity criteria 

x dimensionless space coordinate 

B i Biot number 

K i Kirchhoff number 

F o Fourier number or dimensionless time 

F oq dimensionless phase lag of heat flux 

F oT dimensionless phase lag of temperature gradient 

P f dimensionless blood perfusion coefficient 

P mo dimensionless metabolic heat source coefficient 

P ro dimensionless heat source due to electro-magnetic 

radiation 

θ dimensionless local tissue temperature 

θb dimensionless arterial blood temperature 

θ f dimensionless fluid temperature 

θw 

dimensionless wall temperature of the tissue 

a ∗, x ∗ dimensionless constants 

B dimensionless constant 

It assumes that heat flux vector q ( r, t ) and temperature gradient 

∇T ( r, t ) appear at the same instant of time i.e. thermal signal 

propagates with infinite speed. It means that any thermal distur- 

bance produced at a certain instant of time will be felt throughout 

the medium at the same instant of time. As heat conduction 

in a living biological tissue is due to interaction between solid 

tissue matrix and blood vessels, thermal signal always found to 

propagates with a finite speed [12] . To solve the paradox occurred 

in Fourier’s law, Cattaneo [13] and Vernotee [14] independently 

proposed single-phase-lag (SPL) constitutive relation: 

q (r, t + τq ) = −k ∇T (r, t) , (2) 

Fig. 1. Models for bioheat transfer analysis at different coordinates. 

where a relaxation time τ q has added to capture the micro-scale 

responses in time. SPL constitutive relation characterizes wave-like 

behavior of heat conduction and predicts finite speed for thermal 

signal 

V cv = 

(
k 

ρcτq 

)1 / 2 

. (3) 

SPL constitutive relation when combined with energy equation 

gives thermal wave bioheat transfer(TWBHT) model. Although 

TWBHT model taken into account of micro-scale responses in 

time, it does not capture micro-scale responses in space. In order 

to consider the micro-scale responses in both time and space, 

a phase lag for temperature gradient ( τ T ) has introduced in SPL 

constitutive relation by Tzou [15,16] 

q (r, t + τq ) = −k ∇T (r, t + τT ) . (4) 

According to this relation, the temperature gradient at a point r 

at time t + τT corresponds to the heat flux at r at time t + τq . 

The corresponding model is called dual-phase-lag bioheat trans- 

fer(DPLBHT) model. A kind of generalization of DPLBHT model has 

been done by Zhang [17] based on the theory of porous media and 

non-equilibrium heat transfer in biological tissues. In this theory, 

phase lag times has been expressed in terms of porosity, coupling 

factor, heat capacities and thermal conductivities of blood and 

tissues. Vadasz [18] shows the lack of local thermal equilibrium 

in DPL heat conduction for porous media and demonstrated that 

the condition required for oscillatory solutions are not physically 

attainable. 

The coordinate system and boundary condition used for anal- 

ysis of thermal data changes according to the treatment method. 

Fig. 1 [19] shows the geometry of different kinds of coordinates 

considered in this study. In Fig. 1 , r p denotes the radius of the 

treatment probe. The Cartesian coordinate ( � = 0 ) corresponds to 

surface heating or cooling. Haugk et al. [20] used body surface 

cooling with a cooling pad and approximated it by Cartesian 

coordinates. Axisymmetric coordinate ( � = 1 ) is suitable for 

treatment using a heating or cooling probe whereas spherical 

symmetric coordinate ( � = 2 ) can be better approximated when 

the heating or cooling section is small. Radio-frequency ablation 

uses a heating probe and can be approximated by axisymmet- 

ric or spherical symmetric coordinates as the study by Haugk 

et al. [20] suggests. Cheng and Liu [21] , Kengne and Lakhssasi 

[22] numerically studied heat transport phenomenon in biological 

tissues using spherical coordinates. Akbarzadeh and Chen [23] has 

derived heat conduction equations based on DPL theory and 
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