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a b s t r a c t 

The asymptotically homogeneous SIR model of Thieme (1992) for growing populations, with incidence 

depending in a general way on total population size, is reconsidered with respect to other parameteriza- 

tions that give clear insight into epidemiological relevant relations and thresholds. One important feature 

of the present approach is case fatality as opposed to differential mortality. Although case fatality models 

and differential mortality models are equivalent via a transformation in parameter space, the underlying 

ideas and the dynamic behaviors are different, e.g. the basic reproduction number depends on differential 

mortality but not on case fatality. The persistent distributions and exponents of growth of infected solu- 

tions are computed and discussed in terms of the parameters. The notion of asymptotically exponentially 

growing state (as opposed to stationary state or exponential solution) coined by Thieme is interpreted 

in terms of stability theory. Of some interest are limiting cases of models without recovery where two 

infected solutions exist. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Most likely, Anderson and May [2] were the first to discuss 

the question whether an exponentially growing population can be 

controlled by an infectious disease. They presented a model based 

on mass action incidence. Many authors have studied the spread 

of epidemics in populations of varying size [3–10] . Andreasen 

[11] mentions specifically exit rates towards immunity and disease- 

related death. Thieme [1,12] proposed and analyzed a rather gen- 

eral model system in which standard incidence is modified by a 

factor depending on total population size, 

˙ S = νN − μS − βC(N) 
SI 

N 

˙ I = βC(N) 
SI 

N 

− (μ + α + δ) I 

˙ R = αI − μR 

N = S + I + R. (1.1) 

Here S, I, R are the classes of susceptible, infected and recovered, 

N is the total population size. The demographic parameters are the 

birth rate ν and the natural death rate μ. The epidemiological pa- 

∗ Corresponding author. 

E-mail addresses: hadeler@uni-tuebingen.de (K.P. Hadeler), klaus.dietz@uni- 

tuebingen.de (K. Dietz), muntaser.safan@yahoo.com (M. Safan). 

rameters are the transmission rate β (in case that C ( N ) ≡ 1), the 

recovery rate α, and the differential mortality (disease-related per 

capita mortality rate) δ, see Section 2 . The case of mass action in- 

cidence is included for C ( N ) ≡ N . Throughout the paper we assume 

that the uninfected population is growing, i.e., we assume ν > μ. 

The incidence is standard incidence, modified by a factor C ( N ) 

which in the homogeneous case is C ( N ) ≡ 1 [13] . As in [1] we 

assume that C ( N ) is a non-decreasing function, not necessarily 

bounded. 1 

We discuss the results in terms of case fatality when the model 

assumes the form 

˙ S = νN − βC(N) 
SI 

N 

− μS 

˙ I = βC(N) 
SI 

N 

− γ I − μI 

˙ R = (1 − c) γ I − μR. (1.2) 

Here γ is the rate at which individuals leave the infected compart- 

ment (other than by death from other causes), and c is the case 

fatality. The two systems (1.1) and (1.2) are mathematically equiv- 

alent, case fatality c replaces differential mortality, see Section 2 . 

1 In [1] the parameter β is normalized to 1 and the basic reproduction number is 

formulated in terms of the function C ( N ) which is inconvenient since N is variable. 

The present notation, with a rate β (transmission rate in the standard case) and a 

dimensionless function C ( N ), keeps the connection to standard epidemic models. 
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The results of Thieme [1] are almost exhausting as the dy- 

namic behavior of the system (1.1) is concerned. Consider a solu- 

tion of (1.2) with N → ∞ and lim t→∞ 

C(N) = C ∞ 

< ∞ . The limiting 

system 

˙ S = νN − βC ∞ 

SI 

N 

− μS 

˙ I = βC ∞ 

SI 

N 

− γ I − μI 

˙ R = (1 − c) γ I − μR (1.3) 

is a homogeneous system, but it is not a special case of (1.2) . The 

typical solution of (1.3) is an exponential solution while the typical 

solution of (1.2) approximates an exponential solution as N stays 

finite but goes to infinity. 

When the total population size in (1.2) goes to infinity then the 

limiting exponential solution is not a true solution but only a so- 

lution of a limiting system. This feature makes stability analysis 

complicated. We overcome this difficulty by a transformation such 

that standard stability theory applies. We recover the overview of 

[1] of all possible cases in terms of the basic reproduction number 

and a critical threshold Q that measures the washout effect due to 

population growth in the presence of the disease. 

As has been observed in [1] , when C ( N ) is not constant, upon 

varying a suitable parameter, there is an interval of stationary 

points while in the homogeneous case there is only one station- 

ary point. 

Finally, we show that the system in the limit case without re- 

covery has two infected solutions. The second solution plays a role 

in the dynamics in cases of high disease-related mortality. 

The paper is organized as follows. In Section 2 the relation be- 

tween differential mortality and case fatality is further explored. 

In Section 3 known results on the homogeneous models are pre- 

sented. In Section 4 we explain asymptotically homogeneous sys- 

tems and in Section 5 we recast the results from [1] and give short 

proofs for existence of stationary states and asymptotically expo- 

nential solutions. We do not discuss the stability and convergence 

results in [1] . In Sections 6 and 7 we study the behavior of the ho- 

mogeneous model for large case fatality, to some extent following 

earlier results in [14] . The paper closes with a discussion. 

2. Case fatality versus differential mortality 

The argument for “differential mortality” goes as follows. Un- 

infected individuals have mortality μ. For infected individuals the 

mortality is higher. The difference δ is the differential mortality 

(or excess mortality). The expression (α + μ + δ) −1 is the mean 

sojourn time in the infected state. Given the sum α + μ + δ, the 

parameter of a sum of three Poisson processes, we cannot tell 

whether an existing individual has recovered, or has died from nat- 

ural causes, or from the disease. But within the framework of the 

compartment model (1.2) we define the proportions of recovered 

and dead individuals. 

The first case fatality model is due to Daniel Bernoulli 1766 (see 

an abridged translation of the original paper in [15] ). This model 

has been discussed in detail in [16] . In the setting of case fatal- 

ity the sum μ + γ is the exit rate from the infected state, and 

c ∈ [0, 1] is the case fatality probability. The idea behind this model 

is that individuals leave the infected state and upon exit it is de- 

cided whether they are dead or recovered. 

The models (1.2) and (1.1) are mathematically equivalent as 

long as they are seen as compartment models (and not as Poisson 

processes) by a transformation in parameter space, 

δ = cγ , α = (1 − c) γ , (2.1) 

γ = α + δ, c = δ/ (α + δ) . (2.2) 

The parameter δ is a rate while c is a probability and should not 

be called a risk because “risk” may be connected to the product of 

a probability and the resulting damage. 

If γ > 0 and c ∈ [0, 1] are given, then (2.1) yields δ ≥ 0, α ≥ 0 

with α + δ > 0 . On the other hand, if such α and δ are given, then 

(2.2) yields γ > 0 and c ∈ [0, 1]. The case c = 1 corresponds to 

α = 0 and c = 0 to δ = 0 . 

Hence, every differential mortality model is a case fatality 

model and every case fatality model is a differential mortality 

model. 

The difference between the two models shows up in the basic 

reproduction numbers for the homogeneous case C ( N ) ≡ 1. In the 

differential mortality setting, 

R 

hom 

0 = 

β

(ν − μ) + α + μ + δ
= 

β

ν + α + δ
. (2.3) 

It increases with decreasing δ, as was discussed in [17] in the con- 

text of treating HIV/AIDS patients, while in the case fatality set- 

ting 

R 

cas 
0 = 

β

( ν − μ) + μ + γ
= 

β

ν + γ
, (2.4) 

it does not depend on c . 

In addition to these numbers we shall also use the basic repro- 

duction number for the standard SIR model 

R 0 = 

β

μ + α + δ
, R 0 = 

β

μ + γ
, (2.5) 

and the demographic reproduction number 

R D = 

ν

μ
. (2.6) 

The authors Day [18] , and Ma and van den Driessche [19] dis- 

cuss whether a case fatality proportion can be defined for a dif- 

ferential mortality model a posteriori . In practice, the case fatal- 

ity proportion gives the proportion of fatal (lethal) cases upon exit 

from the infected compartment. Usually it is called CFR (case fa- 

tality rate) in the literature, although it is clearly not a rate. It may 

range from small values (0.01 for Asian flu) to very large values as 

0.6 for untreated bubonic plague or even 1.0 for rabies. The con- 

cept of CFR is not restricted to infectious diseases, but is used for 

a variety of infectious and non-infectious diseases, from aspergillo- 

sis to stroke. 

In practice, the estimation of the case fatality proportion is sub- 

ject to bias because of the uncertainty about the appropriate num- 

ber of cases in the denominator, see [20,21] . We assume that all 

model parameters are known. The number δ/ (α + δ) is the case 

fatality proportion under the condition that there is no risk of nat- 

ural death during the infectious period. In practice, with the ex- 

ception of HIV/AIDS, the natural death rate μ is much smaller than 

α + δ. 

3. The homogeneous model 

The homogeneous model is obtained from (1.2) for C ( N ) ≡ 1, 

˙ S = νN − β

N 

SI − μS 

˙ I = 

β

N 

SI − γ I − μI 

˙ R = (1 − c) γ I − μR. (3.1) 

In [10] , Section 3.3, Exercise 3.22, this system (with sterile in- 

fected) has been discussed as a model for regulation of the host, 

there 1 − f corresponds to the case fatality. 

The model (3.1) is a homogeneous dynamical system. The typi- 

cal “stationary” solution is not a stationary point but an exponen- 

tial or “persistent” solution, i.e., a solution of the form ( S, I, R ) T e ρt 
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