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a b s t r a c t 

A multi-patch and multi-group modeling framework describing the dynamics of a class of diseases driven 

by the interactions between vectors and hosts structured by groups is formulated. Hosts’ dispersal is 

modeled in terms of patch-residence times with the nonlinear dynamics taking into account the effective 

patch-host size. The residence times basic reproduction number R 0 is computed and shown to depend 

on the relative environmental risk of infection. The model is robust, that is, the disease free equilibrium 

is globally asymptotically stable (GAS) if R 0 ≤ 1 and a unique interior endemic equilibrium is shown to 

exist that is GAS whenever R 0 > 1 whenever the configuration of host-vector interactions is irreducible. 

The effects of patchiness and groupness , a measure of host-vector heterogeneous structure, on the basic 

reproduction number R 0 , are explored. Numerical simulations are carried out to highlight the effects of 

residence times on disease prevalence. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Vector-borne diseases, a major public health problem around 

the world, are responsible for over one million death and hundreds 

of millions cases each year [51,65] and so diminishing their impact 

is a worldwide priority. Travel, climate change and trade have sig- 

nificantly altered vector-borne diseases dynamics [10,26,38,52,53] . 

Ross [56] was the first to model a vector borne disease dynam- 

ics. Ross’s paper [56] and follow up work [57–59] laid the founda- 

tion of what is known today as the field of mathematical or the- 

oretical epidemiology. There is an extensive literature associated 

with the study of vector-host interactions in the context of hu- 

man diseases ( [2,4,6,14–16,20–24,31,40,41,43,44] and the references 

therein). Sparse theoretical results exist on the role of geographical 

heterogeneity on the spread of vector-borne diseases, mostly via 

metapopulation models [1,3,5,18,28,54,61,66,69] , that assume that 

the movement of host is “permanent”; this approach has been 

referred as Eulerian [30,47,48] . A Lagrangian perspective consid- 
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ers the movement of individuals across patches in a framework 

where the hosts’ origin or identity are never lost. This approach, 

useful in the study of the role of movement of individuals in 

highly connected settings albeit it has received limited attention 

[18,25,34,54,60] . 

The concept of Langragian and Eulerian approaches were im- 

plemented by Okubo et al. [47,48] in modeling the diffusion and 

aggregation of animal populations in ecology. This nomenclature 

has been used in the context of epidemic models by Cosner 

et al. [18] . The use of a Lagrangian approach in the study of the 

dynamics and control of vector-borne diseases has also been ex- 

plored in [25,31] prior this work. Specifically, Dye and Hasibeder 

[25,31] considered the study of vector-born dynamics via SIS − SI

type host-vector models in the context of n patch systems. Ro- 

driguez and Torres-Sorando [54] used a Lagrangian perspective via 

the incorporation of short-time visitations to multiple patches, also 

in the context of vector borne disease. In [60] , authors also con- 

sidered a patchy Ross–Macdonald model and derived patch spe- 

cific basic reproduction number in order to identify which patch 

is a source or a sink. More recently, Iggidr et al. [34] introduced 

a general SIR − SI multi group deriving necessary and sufficient 

conditions for the existence of a sharp threshold [34] . Their [34] 
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abstract setting did not incorporate residence times explicitly, al- 

beit their general infection terms technically may allow for their 

inclusion. The study in Iggidr et al. [34] and related papers, with 

the exception of [25,31] , assume that hosts and vectors are res- 

idents or members of particular patch or group. Our framework 

can handle multiple levels of organization including the host’s age 

or socio-economic structure (see [42,64] for the age factors and 

[8,37,49] for the socio-economics’ role). Since vector transmission 

is often determined by the vectors’ place of residence, it is often 

useful to decouple the host’s structure from that of vectors’ popu- 

lation whenever possible. 

In this paper, we consider a vector-host model where the host 

population is structured by groups/classes that interact with non- 

mobile vectors living in multiple patches/environments. The hosts’ 

groups may be defined by socioeconomic background, gender, or 

age. The vectors’ patches represent the vectors’ “space”, which in- 

clude schools, farms, workplaces etc. Hosts, in general, will dis- 

tribute their time in a multitude of vectors’ places of residence 

(patches). In our setup, we assume that the spatial scale under 

consideration is such that ignoring vector mobility across patches 

is acceptable. There are evidences that such an assumption is rea- 

sonable, for example, Dengue and Chikungunya’s urban vectors 

Aedes aegypti rarely travel more than a few tens of meters dur- 

ing their lifespan [1,50] ; the mainly rural but urban adapted vector 

Aedes albopictus have maximum dispersal of 40 0–60 0 m [33,45] ; 

according to [9,45] , the vectors Aedes albopictus are unlikely to 

travel long distance due to wind speed variability, in fact, they 

exhibit a tendency to fly closer to the ground, desisting to fly 

during heavy winds; the adult Anopheles ( vector of malaria) does 

not fly more than 2 km [63] ; and, Anopheles gambiae ’s (the main 

malaria vector in Africa) maximal flight distance is 10 km [36] . 

In short, the spread of vector-borne diseases, in many instances, 

is primarily due to hosts’ dispersal. Therefore, it is assumed here 

as in [5,69] that vectors do not abandon their geographical en- 

vironment or patch. There are alternative modes of mosquitoes 

dispersal like those generated by trade, including the used-tires’ 

trade [46,55] . 

The host population is structured into n groups with dispersal 

modeled via the residence times matrix P = (p i j ) 1 ≤i ≤n, 
1 ≤ j≤m 

, where p ij 

denotes the proportion of time that a host member of Groups i 

spends in Patch j . The use of this approach impacts the temporal 

dynamics of the effective host population size in each patch. Host 

effective population size per patch, that is the number of hosts of 

each group at time t in Patch j , j = 1 , 2 , . . . , m ; is computed us- 

ing the entries of the matrix P as weights. The density of effective 

infected host per patch account for both effective population and 

effective infected population size in each patch. 

The host effective population size has not been incorporated in 

the literature using a Lagrangian approach in the context of vector- 

borne diseases before [18,54] (but see [11] ). Our formulation gener- 

alize the case where vectors and hosts are defined by jointly inhab- 

ited patches [18,34,54] . We prove that the disease free equilibrium 

is GAS if R 0 ≤ 1 and that a unique endemic equilibrium exists and 

is GAS if R 0 > 1 whenever the multi-patch, multi-group system is 

irreducible. This approach has been used in the study of a general 

SIS model in the context of communicable diseases [7] . 

The paper is organized as follow. Section 2 is devoted to the 

derivation and basic properties of the model; Section 3 deals with 

the stability analysis of the disease free equilibrium (DFE) and the 

endemic equilibrium. Section 4 , highlights the role of heterogene- 

ity in term of patch and group variability on the basic reproduc- 

tion number; Section 5 highlights tour results in the context of 

2 groups, 2 patches and 2 groups and 3 patches via simulations. 

Section 6 collects our conclusions and thoughts on the usefulness 

of this approach and list possible extensions. 

2. Derivation of the model 

We consider the dynamics of human-vector interactions within 

a population composed of n social groups and m environments or 

patches. We denote by N h , i the host population in social group i , 

i = 1 , . . . , i, and N v , j vector population in Patch j , j = 1 , . . . , m . The 

susceptible and infected host populations in group i , i = 1 , . . . , n , 

at time t , are denoted by S h , i ( t ) and I h , i ( t ), respectively. It is as- 

sumed that the total host population in each group is constant, 

that is N h,i = S h,i (t) + I h,i (t) ; that the disease in the host is cap- 

tured by an SIS epidemic model while the vectors’ dynamics fol- 

lows an SI framework. The vector population in each patch is com- 

posed by S v , j and I v , j , the susceptible and infected vector popula- 

tions in Patch j , j = 1 , . . . , m, respectively. 

The entries of the residence times matrix P denote the pro- 

portion of time that individuals of different groups spend in each 

patches; specifically p ij represents the proportion of time that 

members of group i spend in Patch j ( p ij ≥ 0 for all j and ∑ m 

j=1 p i j = 1 for all i ). The susceptible individuals of group i ( S h , i ) 

are generated through birth at the per-capita rate μi and they re- 

cover from infection at the per-capita rate γ i . It is assumed that all 

offsprings are susceptible and that the disease does not confer im- 

munity. The birth of susceptible individuals in group i is compen- 

sated by deaths, maintaining constant host population size in each 

group. The host population is at risk of infection in every patches 

from its interaction with local infected vectors ( I v , j , j = 1 , . . . , m ). 

Hence, the dynamics of the the susceptible host of group i , for 

i = 1 , . . . , n, is given by: 

˙ S h,i = μi N h,i + γi I h,i −
m ∑ 

j=1 

b j (N h , N v , j ) βv ,h p i j S h,i 

I v , j 

N v , j 

− μi S h,i 

where b j (N h , N v , j ) is the number of mosquito bites per human per 

unit of time [13,15,27,29] in Patch j . b j (N h , N v , j ) is assumed to be 

a function of the number of host in Patch j ; a population that in- 

cludes visitors from other patches. 

The dynamics of infected hosts of group i , i = 1 , . . . , n, is mod- 

eled as follows 

˙ I h,i = 

m ∑ 

j=1 

b j (N h , N v , j ) βv h p i j S h,i 

I v , j 

N v , j 

− (μi + γi ) I h,i (1) 

The susceptible vectors in Patch j are replenished via constant 

recruitment �v , j , subject to death at the per-capita rate μv and 

removed (through harvesting and spraying) at the per-capita rate 

δj . We suppose that the natural per-capita vectors’ death rates are 

the same in all patches. Though, the vectors do not move across 

patches, the susceptible mosquitoes in Patch j ( S v , j ) may, of course, 

be infected by infected hosts of any group while visiting Patch j . 

The effective proportion of infected individuals in Patch j is there- 

fore given by ∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

Hence, the dynamics of susceptible vector in Patch j , j = 1 , . . . , m 

in patch j at time t is given by 

˙ S v , j = �v ,i − a j βh v S v , j 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) S v , j 

where a j is the number of bites per mosquito per unit of time in 

Patch j , assumed to be constant. 

The dynamics of infected vectors in Patch j is given by 

˙ I v , j = a j βh v S v , j 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) I v , j (2) 

We know that the total number of bites by mosquitoes ( a j N v , j 

in Patch j ) should equal the total number of bites received by 
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