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a b s t r a c t 

We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. 

Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pres- 

sure and wall shear stress. To examine the effects on local plaque formation we also allow the blood ves- 

sel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method 

of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and 

blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison 

with existing water hammer experiments. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Blood hammer is a phenomenon known to occur in cerebral 2 

arteries, where sudden blockage by blood clots can cause acute 3 

rise of blood pressure and lead to intracerebral hemorrhage [2,6] . Q3 
4 

In a recent article Tasraei et al. (2015) have reported a numerical 5 

model of blood hammer in a short posterior cerebral artery (length 6 

L = 6 . 75 mm, diameter 2 R = 1 . 77 mm). Blood hammer can also oc- 7 

cur in the longer mid cerebral arteries of length 20 < L < 80 mm 8 

[2] and causes rupture of the vascular wall. 9 

As pointed out first by Damsa et al. [6] , the fluid mechanics 10 

of blood hammer is similar to the classic case of water hammer 11 

in pipe flow when a valve is suddenly closed. This transient phe- 12 

nomenon has been well treated by linear acoustics with the in- 13 

clusion of an empirical law of wall friction. To treat the nonlinear 14 

friction term many schemes of numerical computations have been 15 

developed for practical predictions of water hammer, as reviewed 16 

by Larock et. al. [18] Jovic [15] and Ghidaoui et al. [12] . Flow in 17 

small blood vessels is mostly laminar. Experiments for laminar 18 

water hammer in metal pipes have been performed by Homboe 19 

and Rouleau [13] who used a highly viscous fluid. Relevant the- 20 

ory accounting for laminar friction was started by Zielke [33] , who 21 

solved formally the linearized Navier –Stokes equations throughout 22 

the pipe and evaluated the inverse Laplace transform by numerical 23 

approximation. Most existing simulations of water hammer have 24 
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revealed that the typical time scale of wave attenuation is much 25 

longer than the typical wave period associated with multiple re- 26 

flections. This sharp contrast of scales suggests the use of asymp- 27 

totic methods to obtain approximate solutions which bypass dis- 28 

crete computations and facilitate physical understanding. 29 

An important objective of blood flow analysis is the prediction 30 

of wall shear stress which is known to be the cause of certain dis- 31 

eases [25,27,28] such as the formation of atherosclerotic plaques 32 

in carotid arteries [16,17] . Crucial in heart-valve tissue engineering 33 

[9] , the magnitude and directionality of oscillatory shear stress af- 34 

fect the interaction between blood flow and the vascular tissue [7] . 35 

Excessively high wall shear stress can cause arteriosclerosis lesion 36 

and rupture of aneurysm [22] , and is the major cause of heart at- 37 

tack, stroke, and peripheral arterial disease [8] . 38 

In their numerical simulation of blood hammer in short pos- 39 

terior cerebral arteries, Taeraeia et al. [26] compared Newtonian 40 

and NonNewtonian models of blood. Based on the Carreau model 41 

with four parameters they found that the pressure is somewhat 42 

higher, and the wall shear stress somewhat lower, in the non- 43 

Newtonian model. The results by both models are qualitatively 44 

similar, however. Quantitative differences can also arise by using 45 

different models and parameter values. In this article we shall ex- 46 

amine the pressure and wall shear stress by assuming laminar 47 

flows of a Newtonian blood with constant viscosity. As will be 48 

shown the frequency of blood hammer in a long artery can be high 49 

enough so that viscous shear is important only in a thin oscilla- 50 

tory boundary layer, even in small cerebral arteries. Correspond- 51 

ingly, the relatively slow rate of wave attenuation permits one 52 

to employ the technique of multiple-scale asymptotics [4,21] . To 53 
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Fig. 2.1. Definition sketch. 

consider the possible presence of local plaque formation we fur- 54 

ther allow a small non-uniformity of the vessel radius, and exam- 55 

ine the dynamics associated with wave scattering by the protru- 56 

sion. In hydraulics this non-uniformity may be the consequence of 57 

pipe corrosion. 58 

2. Formulation 59 

Referring to Fig. 2.1 , we consider the classic problem of a 60 

straight and elastic tube of inner radius R ( x , t ) in line with the x 61 

axis, with flowing blood fed by a large vessel or reservoir at x = 0 . 62 

At t = 0 a valve at x = L is closed abruptly. The entire tube is hori- 63 

zontal so that gravity has no effect. 64 

Let A ( x , t ) be the interior cross-sectional area of the tube and 65 

U ( x , t ) the flow velocity averaged over the cross section, and p ( x , t ) 66 

the dynamic pressure in the blood. Mass conservation requires 67 

∂ρA 

∂t 
= −∂(ρAU) 

∂x 
, A = πR 

2 , (2.1) 

where R ( x , t ) is the interior radius of the artery. In an artery, the 68 

blood density ρ is assumed to be constant. We shall model the 69 

inward growth of plaque is by the reduction of artery area. Fur- 70 

thermore, we assume the plaque to be much thinner than R and 71 

does not contribute to the elastic resistance which is borne solely 72 

by the artery wall of thickness h . Let R̄ (x ) denotes the radius in the 73 

absence of distention and dR the incremental distention, i.e., 74 

R (x, t) = R̄ (x ) + d R, d R � R̄ . (2.2) 

We shall also consider small elastic deformation of the vessel wall 75 

so that the stress –strain is linear. Let dR be the elastic deformation 76 

which is related to the blood pressure increment by 77 

R̄ dp = 

Eh 

R̄ 

dR (2.3) 

where E is the Young’s modulus and h the thickness of the wall 78 

[11] . In the hydraulic system the pipe is rigid but water is com- 79 

pressible, 80 

ρ = ρ0 + d ρ, with d ρ � ρ0 , and d p = C 2 s d ρ (2.4) 

where C s is the velocity of sound in water. In either case for small 81 

amplitude waves the fluid mass conservation is governed by 82 

1 

ρC̄ 2 

∂ p 

∂t 
+ 

1 

Ā 

∂( ̄A U) 

∂x 
= 0 . Ā = π R̄ 

2 (x ) , 0 < x < L (2.5) 

where C̄ is the Moen –Korteweg wave speed in an artery 83 

C̄ = 

√ 

Eh 

2 ρR̄ 

(2.6) 

where C̄ (x ) can vary in x via R̄ (x ) . Unlike the sound speed in water 84 

hammer which is a constant ( C s = 1 , 500 m/s), C̄ is larger for larger 85 

E (stiffer wall), or lar ger h (thicker wall) or smaller R̄ (smaller cross 86 

section). In human arteries of uniform radius R , C̄ is normally less 87 

than 10 m/s [3] . However, it is well known that C̄ can be much 88 

higher owing to the stiffening of the vascular walls [1] . A 10 –30 89 

fold increase can be produced by sclerosis of the arteries, arterioles 90 

and capillaries, and by a powerful initial distension of the vascular 91 

wall, i.e., C̄ = 10 0 –30 0 m/s [6] . 92 

To account for wall friction, we consider the linearized equation 93 

of local fluid momentum 94 

∂u 

∂t 
= − 1 

ρ0 

∂ p 

∂x 
+ 

ν

r 

∂ 

∂r 

(
r 
∂u 

∂r 

)
, 0 < x < L, 0 < r < R̄ . (2.7) 

where u ( r , t ) is the local velocity which is related to the area aver- 95 

age by 96 

U(t) = 

2 π

π R̄ 

2 

∫ R̄ 

0 

u (r, t) rdr (2.8) 

Convective inertia is negligible since O ( u , U ) is typically just a 97 

few centimeters per second and the time and length scales are 98 

t = O (L/ ̄C ) and x = O (L ) respectively, so that, 99 

u 

∂u 

∂x 

/ 

∂u 

∂t 
= O 

(
u 

C̄ 

)
� 1 (2.9) 

By taking the area average, the conservation law of mean momen- 100 

tum reads, 101 

ρ0 
∂U 

∂t 
= −∂ p 

∂x 
+ 

2 τw 

R̄ 

, (2.10) 

where τw 

is the wall stress: 102 

τw 

= ρν
∂u 

∂r 

∣∣∣∣
r= ̄R 

, (2.11) 

which is yet unknown. By cross differentiation of (2.5) and (2.10) , 103 

we obtain formally the equation governing the dynamic fluid pres- 104 

sure, 105 

1 

Ā 

∂ 

∂x 

(
Ā 

∂ p 

∂x 

)
− 1 

C̄ 2 

∂ 2 p 

∂t 2 
= 

2 

R̄ 

∂τw 

∂x 
, 0 < x < L, t > 0 . (2.12) 

It can be shown that wave radiation into the reservoir due to the 106 

piston motion at the inlet is negligible if R̄ /L � 1 [29] , hence the 107 

dynamic pressure vanishes 108 

p = 0 , x = 0 . (2.13) 

Let the initial averaged flow velocity at the station of sudden block- 109 

age x = L be U 0 . We impose the following boundary condition 110 

∂ p 

∂x 
= −ρ0 

∂U 

∂t 
= ρ0 U 0 D (t) , x = L, (2.14) 

The simplest mathematical model for D ( t ) is δ( t ). For a more real- 111 

istic model we adopt the following function which has sharp but 112 

finite peak over a very short duration t 0 � L / C , 113 

D (t) = 

1 

t 0 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

t 

t 0 
, 0 < t < t 0 

2 − t 

t 0 
, t 0 < t < 2 t 0 

0 , t > 2 t 0 . 

(2.15) 

which is a less singular version of the delta function and has the 114 

property that 115 ∫ 2 t 0 

0 

D (t) dt = 1 (2.16) 

This simple choice is less singular and improves the numerical con- 116 

vergence of the series solution to be developed later. 117 

In addition we impose the initial conditions 118 

p = 

∂ p 

∂t 
= 0 , t = 0 , 0 < x < L (2.17) 
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