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a b s t r a c t 

While latently infected CD4+ T cells are extremely sparse, they are a reality that prevents HIV from being 

cured, and their dynamics are largely unknown. We begin with a two-state Markov process that models 

the outcomes of regular but infrequent blood tests for latently infected cells in an HIV positive patient 

under drug therapy. We then model the hidden dynamics of a latently infected CD4+ T cell in an HIV 

positive patient and show there is a limiting distribution, which indicates in which compartments the HIV 

typically can be found. Our model shows that the limiting distribution of latently infected cells reveals the 

presence of latency in every compartment with positive probability, supported by clinical data. We also 

show that the hidden Markov model determines the outcome of blood tests and analyze its connection 

to the blood test model. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Up to now, eradicating the human immunodeficiency virus 2 

(HIV-1, which we denote by HIV) in an individual who has be- 3 

come infected has remained out of reach of current medical prac- 4 

tice. However the advent of antiretroviral therapy (ART) changed 5 

HIV from a direct path to AIDS, a fatal disease, to a chronic dis- 6 

ease [22,27,28] . As early as 1996 studies showed that even effective 7 

ART that brings the level of HIV below the level of detection in the 8 

blood does not successfully eliminate the virions from other cells 9 

or biological compartments in the body [7,13,21,26] . 10 

There remains a fundamental problem of understanding how 11 

and why the reservoirs are formed and maintained, and why the 12 

current drug therapy does not completely eradicate them. When 13 

ART is stopped, in all patients (with one possible exception known 14 

as the Berlin patient), the virus reappears in the blood after a pe- 15 

riod of time that varies from individual to individual [14] , often 16 

as soon as a few weeks later [4] . In the case of the Berlin pa- 17 

tient, he had developed acute myelogeneous leukemia, and was 18 

treated with a stem cell transplant from a donor harboring a mu- 19 

tated form of the CCR5 receptor that provides resistance to HIV in- 20 

fection. The patient’s continued absence of detectable virions has 21 

led to exploration of a cure in this direction [32] . Another no- 22 

table case is referred to as the “Mississippi baby” where HIV in- 23 

fection was discovered and treated within 2 days of birth, and ART 24 
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was administered for about 18 months. After stopping the drug, 25 

the virus remained undetectable for 27 months, but viral rebound 26 

occurred [19] . 27 

We approach this topic by presenting two models of the lo- 28 

cation of latently infected cells, referred to as HIV reservoirs, in 29 

an individual undergoing ART, as Markov processes. These models 30 

utilize a tool in dynamical systems that is advantageous for ana- 31 

lyzing spatiotemporal phenomena in extremely complex systems, 32 

even those systems whose dynamics are far from random, as is 33 

the case here. Instead of following each individual virus particle or 34 

infected cell, since there can be millions of virions detected per 35 

milliliter of blood in a newly infected or untreated patient, and 36 

since it has been shown to be impossible to track and destroy a 37 

single virus, or more importantly, every virus particle, we study 38 

qualitative and probabilistic aspects of the dynamics of HIV reser- 39 

voirs. Moreover since typically a blood sample is used to determine 40 

the virus levels of a patient, the actual location of source of the 41 

virus remains hidden. Therefore we are in fact dealing with a hid- 42 

den Markov model; that is, there is the output that is viewed (a 43 

blood test showing the presence or absence of virus) and a hidden 44 

process that is governing the output. Our models incorporate this 45 

multilevel structure. 46 

There are several prevailing theories about why HIV has re- 47 

mained incurable so far; we mention a few here. First, the host 48 

cells for the virions are CD4+ T helper cells, white blood cells es- 49 

sential to a functioning immune system. Their main role is to sig- 50 

nal other T cells to destroy pathogens. Once a CD4+ T cell becomes 51 

actively infected by HIV, the immune cell usually is destroyed; it 52 

can also happen that the HIV enters the cell and produces viral 53 

DNA but does not complete the replication process [6] . 54 
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While the drug therapy appears to inhibit the replication of vir- 55 

tually all active susceptible virions in the blood, there seem to be 56 

virions hiding outside the path of the drugs [10] . In one recent re- 57 

view on latency of the virus under drug therapy [6] , the authors 58 

offer an opinion that the drugs are not able to go effectively to all 59 

sites where the virions can be found: 60 

Recent studies have indicated that anti-retroviral drug- pene- 61 

tration is site- and compound-specific, and drugs that pene- 62 

trate poorly may allow viral replication at that site even when 63 

plasma viral load is below 50 copies ml −1 . 64 

Such locations are called sanctuary sites but are not the subject 65 

of this study. 66 

Another theory as to why cures (and vaccinations) remain inac- 67 

cessible is that the virus is known to mutate extremely quickly. Au- 68 

topsies of patients with HIV show numerous variations (species) of 69 

the virus exist in a body, even within a single organ [2] . This aspect 70 

of HIV dynamics is treated mathematically using cellular automata 71 

models first introduced in [34] , and developed rigorously in [5] . In 72 

a follow-up paper by Hawkins and Molinek [18] the authors show 73 

that the model has limiting values of healthy CD4+ T cells that can 74 

occur and the viral particles are never completely eliminated with- 75 

out “perfect drugs” that are 100% effective in all compartments of 76 

the body, coupled with an immune response that can eradicate all 77 

the HIV. Up to now this has not been achieved. 78 

In addition to the possibility of active replicating viruses per- 79 

haps even under drug therapy, albeit at a low level, it is now gen- 80 

erally accepted that there are reservoirs of latent viruses that can 81 

persist in the system of an HIV infected patient for years [6,7,14] , 82 

which form the focus of this paper. A working definition is that 83 

a latently infected cell is a cell that does not produce infectious 84 

viral particles but is able to do so at some future time, behaving 85 

like a Trojan horse. The cell appears to be a healthy cell to the im- 86 

mune system, the drugs do not affect the hidden virions, so it can 87 

spring to action at any moment with the viruses replicating in the 88 

host cell and producing millions of new virions. The passive viral 89 

material (provirus) is passed to cells during normal cellular repli- 90 

cation and can reactivate without warning. Therefore up to now, 91 

killing the cell containing the provirus seems to be one of the only 92 

ways to get rid of the provirus [4] . Many studies have shown that 93 

there remain latently infected resting CD4+ T cells in the lymph 94 

nodes and other organs; moreover these reservoirs can be long- 95 

lived, with a mean half-life of more than 3 years [13] . A clinical 96 

study of 36 HIV patients on ART showed the presence of viruses 97 

able to replicate in 34 of the patients, with a typical occurrence of 98 

.1 - 1.0 infectious units per million resting CD4+ T cells [13] . 99 

To summarize, while ART is effective in suppressing HIV repli- 100 

cation indefinitely, it does not eradicate all the virions in the sys- 101 

tem and HIV seems to return in virtually all patients, and some- 102 

times quite quickly when treatment is stopped. The reason for the 103 

term “HIV reservoir” is that the genome of the virus is securely 104 

protected by a seemingly healthy cell until something activates it 105 

to continue to HIV production. While the definition of reservoir has 106 

other interpretations, evidence shows this is the most likely so we 107 

use that here [12] and do not work with sanctuary sites, except in- 108 

directly. We make some simplifying assumptions throughout; one 109 

is that the latently infected cells are CD4+ T cells, even though 110 

there is evidence that other types of cells may serve as reservoirs 111 

for HIV [1] . The other assumption is that latently infected CD4+ T 112 

cells circulate, though our model allows for the existence of resi- 113 

dent cells as well [25] . This is discussed in Section 2.3 . 114 

In this paper we construct a mathematical model based on lim- 115 

ited data about the reservoirs that have been observed and ana- 116 

lyzed in clinical studies. The virions, as well as most actively and 117 

latently infected cells circulate throughout the body through bio- 118 

logical pathways, and the location of a latently infected cell at any 119 

given moment is extremely complex. While most studies indicate 120 

that CD4+ T cells circulate throughout a body, we incorporate the 121 

observation that some CD4+ T cells remain resident in certain lo- 122 

cations [24,25] . Our use of stochastic methods to understand and 123 

model the location of the latently infected cells, and how they im- 124 

pact a blood test, does not assume that the migration of the cells is 125 

random. Indeed the movement of T cells throughout a body is sub- 126 

ject to severe physical stresses (fast blood flow) as well as pressure 127 

to remain near lymph nodes. Our model uses the stochastic fea- 128 

tures of the movement, bolstered by some theorems that estimate 129 

the rate of spread, and the limiting distributions. We conclude that 130 

after a fairly short period of time (perhaps measured in days), la- 131 

tently infected cells have spread sparsely throughout the body. This 132 

indicates that treatment ought to follow the same pathways and 133 

dynamical processes in order to reach the hidden virus. 134 

We introduce and analyze the mathematical models in 135 

Sections 2.1 and 2.3 . We give a simple two-state Markov process 136 

model of the outcome of blood tests for the presence of viral par- 137 

ticles in Sec. 2.1 , and in Sec. 2.3 we show the existence of a hid- 138 

den Markov model that more accurately reflects the dynamics of 139 

the latently infected cells, and show it is a lifting of the two-state 140 

model. In Section 2.2 we give an overview of the location of the 141 

reservoirs based on the scientific literature. In Section 3 we assign 142 

some specific sample numbers to the entries in the matrices and 143 

compare the resulting measures on both models. 144 

2. Theory and Models 145 

2.1. The two-state model 146 

When a blood sample is taken from an HIV positive patient 147 

under drug treatment, it is expected that the viral presence will 148 

be below the detectable levels [3,8] . More elaborate tests can be 149 

performed to assess the presence of latently infected CD4+ T cells 150 

[3,8] in the blood, however there is no simple method for measur- 151 

ing the presence and level of latently infected cells [16] . Therefore, 152 

after each sample is tested, we can think of the blood as being in 153 

one of two states, either the test is positive for the presence of 154 

such cells (state P = 1 ) or negative (state N = 0 ). We assume this 155 

test is performed once a month and the outcome is recorded. We 156 

also assume the blood is sampled monthly for an indefinite period 157 

of time, and we construct a Markov chain from the results. 158 

This yields the following 2 × 2 incidence matrix B , where 159 

b i j = 1 if and only if you can get from state i to state j in one 160 

time step. Clearly a negative test can be followed by a positive one, 161 

and the same result can occur twice in a row; our assumption is 162 

that once the presence of latently infected CD4+ T cells is estab- 163 

lished with a positive blood test result, the latently infected cells 164 

cannot be destroyed easily though the blood test could come back 165 

negative if the quantity of latently infected cells, believed to be 166 

very sparse, is not seen on a subsequent test. The adjacency graph 167 

in Figure 1 shows the possible connections between the nodes of 168 

Positive and Negative; even though the likelihood of each arrow 169 

is different (as shown in (2.2) ), the graph shows it is possible for 170 

each blood test outcome to be followed by either outcome. 171 

B = 

(
1 1 

1 1 

)
(2.1) 

The matrix is equivalent to the directed graph in Fig. 1 , where B = 172 

b i j , and b i j = 1 if and only if there is an arrow from state i to j and 173 

0 otherwise. 174 

We start with a simple one-step Markov process associated to 175 

B ; we review the mathematical underpinnings of a Markov process 176 

first. We begin with the space of all possible infinite sequences of 177 

outcomes, � = { 0 , 1 } N ; a point x ∈ � is a one-sided sequence of 178 

Please cite this article as: J.M. Hawkins, Markov process models of the dynamics of HIV reservoirs, Mathematical Biosciences (2016), 

http://dx.doi.org/10.1016/j.mbs.2016.02.009 

http://dx.doi.org/10.1016/j.mbs.2016.02.009


Download English Version:

https://daneshyari.com/en/article/6371814

Download Persian Version:

https://daneshyari.com/article/6371814

Daneshyari.com

https://daneshyari.com/en/article/6371814
https://daneshyari.com/article/6371814
https://daneshyari.com

