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a b s t r a c t 

Habitat heterogeneity can have profound effects on the spreading dynamics of invasive species. Using 

integro-difference equations, we investigate the spreading dynamics in a one-dimensional heterogeneous 

landscape comprising alternating favourable and unfavourable habitat patches or randomly generated 

habitat patches with given spatial autocorrelation. We assume that population growth and dispersal (in- 

cluding emigration probability and dispersal distance) are dependent on habitat quality. We derived an 

approximation of the rate of spread in such heterogeneous landscapes, suggesting the sensitivity of spread 

to the periodic length of the alternating favourable and unfavourable patches, as well as their spatial au- 

tocorrelation. A dispersal-limited population tends to spread faster in landscapes with shorter periodic 

length. The spreading dynamics in a heterogeneous landscape was found to be not only dependent on 

the availability of favourable habitats, but also the dispersal strategy. Estimates of time lag before de- 

tection and the condition for boom-and-bust spreading dynamics were explained. Furthermore, rates of 

spread in heterogeneous landscapes and corresponding homogeneous landscapes were compared, using 

weighted sums of vital rates. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Landscape heterogeneity can affect the behaviour of biological 

invasions at different stages, especially when established species 

start to become invasive and spread into heterogeneous landscapes 

[1–3] . Empirical investigations have suggested that the spatial het- 

erogeneity of landscapes can influence the rate of spread of 

invasive species [4] as demography and dispersal are both context 

based (i.e. sensitive to spatial heterogeneity) [1,5] . While many 

robust estimates of the asymptotic rate of spread on homoge- 

neous landscapes have been formulated [6] , the effects of spatial 

heterogeneity on the spreading dynamics of species with habi- 

tat sensitive demography and dispersal demand more attention 

[7,8] . 

Invasion dynamics in heterogeneous landscapes has long been 

theoretically explored using continuous time frameworks such 

as partial differential equations. In particular, Shigesada et al. 

[9] simulate spatial heterogeneity by alternating homogeneously 

favourable and unfavourable habitat patches on an infinite one- 

dimensional environment, with the growth rate and diffusion co- 
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efficient assumed as periodic step functions of locations. It empha- 

sises the effect of the lengths of periodically alternating favourable 

and unfavourable patches on the rate of spread. In contrast, 

Kinezaki et al. [10] consider the effect of spatial heterogeneity by 

allowing vital rates to vary sinusoidally in space, representing a 

continuous change in habitat quality. It emphasises the role of 

both the amplitude and periodic length of habitat heterogeneity 

on the rate of spread. In both models, when the periodic length of 

alternating habitat quality is short, the initial population will prop- 

agate from the introduction point into periodic travelling waves, 

with the rate of spread being c = 2 
√ 〈 r〉 A 〈 D 〉 H , where 〈 r 〉 A and 

〈 D 〉 H denote the spatial arithmetic mean of the growth rate and 

the spatial harmonic mean of the diffusion coefficient, respectively. 

When the focal species does not follow a diffusion-type move- 

ment, integrodifference equations (IDEs) are commonly used for 

modelling the spatiotemporal dynamics of biological invasions 

[11] . For instance, Kawasaki and Shigesada [7] have examined 

the spreading dynamics with an exponentially damping (Laplace) 

dispersal kernel in a patchy landscape with alternating favourable 

and unfavourable patches, while assuming that dispersal is insen- 

sitive to habitat heterogeneity. They found that the presence of 

unfavourable patches can dramatically reduce the rate of spread, 

although the population can always spread with wide enough 

favourable habitats. Dewhirst and Lutscher [8] expanded this 
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model by considering habitat dependent dispersal behaviours, 

with individuals from unfavourable habitats dispersing farther 

in an attempt to find favourable habitats. These works put the 

emphasis on the existence of a minimum proportion of favourable 

habitats for successful invasions and spread. Gilbert et al. [12] 

further consider the effects of the landscape periods on the spread 

of a structured population. 

We here formulate the spread of a species with non- 

overlapping generations in a heterogeneous patchy landscape 

as defined by Shigesada et al. [9] . Besides assuming a habitat- 

dependent population growth, dispersal behaviours are further 

affected by habitat quality in the following two ways. First, the 

dispersal distance of migrating individuals is dependent on the 

habitat quality, with individuals from unfavourable locations dis- 

persing farther for locating favourable habitats [13,14] . Second, only 

a fraction of the local population emigrates (defined as emigration 

probability) while others remain sedentary - the number being 

dependent on habitat quality. We also perform numerical simula- 

tions to investigate the instantaneous rate of spread, and derive an 

estimate for the asymptotic rate of spread in randomly generated 

patchy landscapes with different levels of spatial autocorrelation. 

2. Model 

We consider a population with non-overlapping generations un- 

dergoing growth and dispersal at separate times, using integrodif- 

ference equations (IDEs). With the vital rates affected by spatial 

heterogeneity, we have the following IDE model, 

u (x, t + 1) = 

∫ 
[ d(y ) k (x − y, y ) + (1 − d(y )) δ(x − y )] 

×g(u (y, t) , y ) dy, (1) 

where u ( x,t ) denotes the population size at location x and time t . 

The function g gives the population growth (more specifically, fe- 

cundity in species with non-overlapping generations). It is a non- 

negative function satisfying density dependent recruitment, g ( u, 

x ) ≤ R ( x ) with R (x ) = ∂ g/∂ u | u =0 being the intrinsic growth rate 

at location x . In the Ricker (1954) model, we have g(u (x, t) , x ) = 

u e r(x ) −u (x,t) and R (x ) = e r(x ) . 

We considered two factors in formulating the habitat depen- 

dent dispersal strategy [14,15] . First, the dispersal kernel k in 

Eq. (1 ) gives the probability distribution that an individual from lo- 

cation y disperses to location x . The dispersal distance effectuated 

by an individual during a dispersal event can be influenced by the 

habitat quality [13,14] . That is, k ( x – y,y ) not only depends on the 

distance between location x and y but also the habitat quality of 

the originating location y . For instance, a Gaussian dispersal kernel 

is thus 

k (x − y, y ) = (1 / 
√ 

2 πσ 2 (y ) ) exp (−(x − y ) 2 / (2 σ 2 (y ))) , 

and a Laplace dispersal kernel 

k (x − y, y ) = (1 / 
√ 

2 σ 2 (y ) ) exp (−
√ 

2 | x − y | / 
√ 

2 σ 2 (y ) ) . 

Second, spatial heterogeneity can also influence the probability, 

d ( y ), of an individual emigrating from its original location y to 

other patches, often following a ‘good-stay, bad-disperse’ rule [5] . 

Therefore, 1 − d(y ) gives the proportion of individuals remaining 

sedentary, with δ(x − y ) in Eq. (1 ) being 1 if x = y and 0 otherwise. 

Here we focused on periodically alternating habitats of 

favourable and unfavourable patches, with lengths L 1 and L 2 , 

respectively [7,9] . The habitat was laid out with a periodic length 

of L ( = L 1 + L 2 ) and a proportion of p ( = L 1 / L 2 ) favourable habitats 

in the landscape. The intrinsic growth rate R ( x ) is given by R 1 ( > 1 

to ensure population growing) in favourable habitats and R 2 ( > 0) 

in unfavourable habitats. Similarly, we also defined the emigration 

probability, d ( x ), being d 1 and d 2 , and the variation of dispersal 

Fig. 1. (A) Travelling periodic waves in a heterogeneous landscape. Dashed black 

line represents the periodic steady state of the model. Solid black and grey lines 

indicate the population size at time t = 15 and t = 25 respectively. Hatched region 

indicate unfavourable patches. (B) Population range front for the initial population 

introduced in favourable (solid line) and unfavourable (dashed line) locations. While 

the former started to spread immediately, the population introduced into an un- 

favourable habitat experienced a lag between the introduction and detected spread. 

Parameter values are p = 0.5, R 1 = e , R 2 = e −0.5 , d 1 = 0.75, d 2 = 1, σ 1 
2 = 1, σ 2 

2 = 1. 

kernel, σ 2 ( x ), being σ 2 
1 

and σ 2 
2 

in favourable and unfavourable 

habitats, respectively. 

To study the dynamics of the above IDE model, we first inves- 

tigate its non-trivial steady states by replacing u ( x,t + 1) and u ( y,t ) 

in Eq. (1 ) with v ( x ) and v ( y ), and numerically solving the equa- 

tion using the routine optimize.fsolve in the Python library SciPy 

[16] . To investigate the spreading dynamics, we ran the model 

for 100 generations and calculated the population range at time t 

as x ∗(t) = max { x ; u (x, t) ≥ u ∗} for a threshold of detection u ∗. The 

corresponding instantaneous and average rate of spread can be 

given as c I (t) = x ∗(t + 1) − x ∗(t ) and c A (t ) = x ∗(t ) /t . The time lag 

before range expansion is defined as the first time when the pop- 

ulation was detected after its introduction, T ( u ∗) = min { t ; x ∗(t ) > 

0 } . The spreading dynamics was also compared with the dynamics 

in homogenous landscape with normalised vital rates (e.g. d = p ·
d 1 +( 1 – p ) d 2 ). 

3. Results 

3.1. General behaviour 

The model exhibited a periodic steady state, with obvious 

gaps between the population sizes in favourable and unfavourable 

habitats ( Fig. 1 A). The gap size is more sensitive to changes in 

emigration probability ( d ) than to changes in dispersal distance 

( σ 2 ), with even higher sensitivity observed when increasing dis- 

persal probability from favourable habitats than when increasing 

the same factor in unfavourable ones. When the proportion of 

favourable habitats ( p ) increased, population sizes remained largely 

unchanged in favourable habitats whilst population sizes in un- 

favourable habitats increased notably. Similarly, increasing only the 

periodic length of spatial heterogeneity ( L ) notably reduced the 

populations in unfavourable habitats. 

Unless the population eventually became extinct, it was found 

to expand its range in both directions from the introduction loca- 

tion, in the form of a periodic travelling wave (i.e. u (x + L ; t + t ′ ) = 

u (x ; t) for some t ′ > 0) ( Fig. 1 A). (We note that Fig. 1 and the 

remaining figures in this section were obtained using Gaussian 

dispersal kernel) A time lag was often observed before the de- 

tection of the population after its initial introduction in an un- 

favourable patch ( Fig. 1 B). The time lag can be shortened by in- 

creasing the initial population size or the vital rates (growth and 

dispersal rates). Time lags on the other hand can be prolonged 

for larger thresholds of detection or wider unfavourable patches. 

Nonetheless, the spreading dynamics remained the same for pop- 

ulations in landscapes with different periodic lengths but a com- 

mon proportion of favourable habitats ( p ), regardless of whether 

it was initially introduced into a favourable or unfavourable patch. 
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