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a b s t r a c t 

Parasites play a significant role in trophic interactions and can regulate both predator and prey pop- 

ulations. Mathematical models might be of great use in predicting different system dynamics because 

models have the potential to predict the system response due to different changes in system parameters. 

In this paper, we study a predator–prey–parasite (PPP) system where prey population is infected by some 

micro parasites and predator–prey interaction occurs following Leslie–Gower model with type II response 

function. Infection spreads following SI type epidemic model with standard incidence rate. The infection 

process is not instantaneous but mediated by a fixed incubation delay. We study the stability and insta- 

bility of the endemic equilibrium point of the delay-induced PPP system with respect to two parameters, 

viz., the force of infection and the length of incubation delay under two cases: (i) the corresponding non- 

delayed system is stable and (ii) the corresponding non-delayed system is unstable. In the first case, the 

system populations coexist in stable state for all values of delay if the force of infection is low; or show 

oscillatory behavior when the force of infection is intermediate and the length of delay crosses some 

critical value. The system, however, exhibits very complicated dynamics if the force of infection is high, 

where the system is unstable in absence of delay. In this last case, the system shows oscillatory, stable 

or chaotic behavior depending on the length of delay. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Theoreticians have used different mathematical models to un- 

derstand, explain and predict complex dynamics of predator–prey 

interactions. Classical Lotka–Volterra or Rosenzweig–MacArthur 

predator–prey models and its variants assume that prey popula- 

tion only grows logistically to its carrying capacity but the preda- 

tor has no such limitation. Leslie [1] , for the first time, considered 

logistic growth of predator population with prey density as its up- 

per limit. Thus, the predator’s growth equation contains a nega- 

tive term which has a reciprocal relationship with per capita avail- 

ability of its preferred prey [2,3] . If X ( t ) and Y ( t ) are, respectively, 

the prey and predator densities at time t then Leslie–Gower model 

with type II predator’s response function is represented by 

dX 

dt 
= r 1 X − b 1 X 

2 − a 1 X Y 

k 1 + X 

, 

dY 

dt 
= Y 

(
r 2 − a 2 

Y 

X 

)
. (1) 
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It says, in absence of predator, the prey population grows exponen- 

tially with intrinsic per capita growth rate r 1 when prey is rare. 

However, prey population follows density-dependent birth rate, 

with b 1 as the strength of density dependency, when its size in- 

creases. Note that this model does not state a carrying capacity 

for the prey population in an explicit way, but models in an im- 

plicit way by means of intraspecific competition coefficient. This is 

known as emergent carrying capacity [4] since it is an emergent 

property based on actual life-history traits of prey, rather being a 

predetermined number (say K ) as in popular logistic model. How- 

ever, as an special case, one can easily obtain the explicit carrying 

capacity ( K = r 1 /b 1 ) from the emerging carrying capacity. Preda- 

tor regulates prey population following Type II response function 

a 1 X 

k 1 + X , where a 1 is the maximal per capita prey consumption rate 

and k 1 is the half saturation constant. Predators also grow logisti- 

cally to its carrying capacity 
r 2 
a 2 

X with maximum per capita growth 

rate r 2 by consuming its prey. One can observe that predator’s car- 

rying capacity is not a constant, but a function of prey density, X . 

The proportionality constant a 2 represents the number of prey re- 

quired to support one predator at equilibrium when the maximum 

per capita growth rate of predator is unity. All parameters are 
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positive. Note that when X → ∞ then 

1 
Y 

dY 
dt 

→ r 2 ; and 

1 
Y 

dY 
dt 

→ −∞ 

when X → 0. In other words, the per capita growth rate of preda- 

tor reaches to its maximum when prey density is too high and be- 

comes negative, leading predator extinction, when prey population 

is scarce. In recent past, many researchers have studied the Leslie–

Gower predator–prey model and its variants with different modifi- 

cations [5–10] . 

Parasites play a significant role in trophic interactions 

[11–14] and can regulate both predator and prey populations. 

There are many examples that show that prey population is in- 

fected by some parasites and predators consume disproportion- 

ately large number of infected prey [15–18] . Because of infection, 

the prey population is partitioned into two classes of susceptible 

population and infective population denoted by S and I , respec- 

tively. Recently, some authors have studied Leslie–Gower predator–

prey model in presence of parasitic infection [19–23] . Haque and 

Venturino [19] studied a Leslie–Gower predator–prey model with 

prey infection and type I response function. It was shown that the 

behavior of the system largely depend on the disease incidence 

rate. Zhou et al. [23] studied a modified Leslie–Gower predator–

prey model where prey population is infected by some para- 

sites. They studied the local and global stability of the biologically 

feasible equilibria and permanence of the system. It was shown 

that the strictly positive interior equilibrium undergoes Hopf bi- 

furcation when the rate of infection crosses a critical value. Shi 

et al. [22] studied the role of incubation delay in a Leslie–Gower 

predator–prey model with prey infection. They observed that the 

positive interior equilibrium undergoes a Hopf bifurcation if the 

delay crosses a critical value. In [20] , authors show the influences 

of intraspecific competition and infection coefficient in the stabil- 

ity of the coexistence equilibrium point. In an another study [21] , 

they modified Leslie–Gower predator–prey model where disease 

spreads among the predator species. They showed global stabil- 

ity and bifurcations for some of the equilibria and also determined 

the sufficient conditions for persistence of the ecosystem species. 

These studies show that the incidence rate plays key role in the 

dynamics of predator–prey–parasite system. All these models [19–

23] consider simple mass action law or bilinear law to model inci- 

dence rate of disease. According to this law, the rate of new infec- 

tion at any time t is proportional to the product of the densities of 

infected and susceptible individuals at that time and is represented 

by β(t) = λSI, where λ is the disease transmission coefficient. This 

mass action law has some unrealistic features, viz., the number of 

newly infected individuals produced by a single infective individual 

depends on S and becomes very high when S is large [24] . Some 

authors [25–28] argued that standard incidence rate is more ap- 

propriate to express the disease transmission term. Following this 

law, the rate of new infection at any time t is defined as 

β(t) = 

λSI 

S + I 
. (2) 

One can see that the per capita infection rate is independent of in- 

fective and tends to a constant when I is large. In this study, we 

therefore assume that the mode of disease transmission follows 

the standard incidence rate. Castration [29] , conspicuousness [15] , 

behavior modification [30,31] , increased mortality, increased pre- 

dation [17,32,33] , competitive abilities of hosts [34] , feeding rate 

[35] etc. are supposed to be parasitic effects on hosts. We thus 

assume that infectious prey cannot give birth due to castration 

caused by parasite [36] . It is also assumed that an infected individ- 

ual does not recover or become immune, and the disease spreads 

horizontally from an infectious individual to a susceptible individ- 

ual. Infectious preys are either removed by predation or removed 

by disease related death [37] . Since the prey species are weak- 

ened due to infection, predators can easily catch infected individ- 

uals. Susceptible preys however maintain their density dependent 

growth at the same rate as it was in absence of infection. Following 

other similar studies [12,38–41] , we assume that infectious preys 

contribute negatively to the growth rate of host as they are still in 

the environment and share resources with susceptible preys. Laf- 

ferty and Moris [17] observed through field experiment that par- 

asitized fishes increase their risk of avian predation by swimming 

close to the water surface and predation rates of piscivorous birds 

on infected fish is, on an average, 31 times higher than the preda- 

tion rates on susceptible fish. Therefore, it will not be unrealistic 

to assume that predators consume only infected preys. Assuming 

μ as the disease related death rate of infectious prey, we study 

the following PPP model: 

dS 

dt 
= r 1 S − b 1 S 

(
S + I 

)
− λSI 

S + I 
, 

dI 

dt 
= 

λSI 

S + I 
− a 1 IY 

k 1 + I 
− μI, 

dY 

dt 
= Y 

(
r 2 − a 2 Y 

I 

)
, if (S, I) � = (0 , 0) , 

dY 

dt 
= 0 , if (S, I) = (0 , 0) , (3) 

subjected to positive initial conditions S (0) > 0, I (0) > 0, Y (0) > 0. 

The system is thus defined in the set �, where 

� = { (S, I, Y ) ∈ R 

3 : S ≥ 0 , I ≥ 0 , Y ≥ 0 } . 
All parameters are assumed to be positive. 

Different kind of delays are used in mathematical models to 

represent the biological events more accurately. For example, a 

negative feedback delay is considered in the logistic prey growth 

rate to represent density dependent feedback mechanism [42] and 

a positive feedback delay is considered to represent the gestation 

time of the predator [43] . Model system (3) assumes that the in- 

fection process is instantaneous. That means, as soon as an in- 

fected prey contacts a susceptible prey, the latter becomes infec- 

tious. However, in reality, there is a time-delay between the two 

events, viz., the first effective contact between susceptible and in- 

fectious preys and the newly infected prey becomes productively 

infectious. To incorporate this incubation delay, we rewrite the sys- 

tem (3) as 

dS 

dt 
= r 1 S − b 1 S(S + I) − λSI 

S + I 
, 

dI 

dt 
= λ

∫ t 

−∞ 

S( ̃  u ) I( ̃  u ) F (t − ˜ u ) d ̃  u 

S( ̃  u ) + I( ̃  u ) 
− a 1 IY 

k 1 + I 
− μI, 

dY 

dt 
= Y 

(
r 2 − a 2 Y 

I 

)
, if (S, I) � = (0 , 0) , 

dY 

dt 
= 0 , if (S, I) = (0 , 0) . (4) 

Here we have assumed that the number of infectious preys at time 

t is arising from the contacts of actual population of susceptible 

and infectious preys at time (t − ˜ u ) , where ˜ u is distributed accord- 

ing to a probability distribution function F ( ̃  u ) , known as delay ker- 

nel (or memory function), defined by 

F ( ̃  u ) = 

a p+1 ˜ u 

p 

p! 
exp ( −a ̃  u ) , 

where a ( > 0) is a constant and p , known as order of the delay, is 

a non-negative integer. The average delay is defined as [44] 

T̄ = 

∫ ∞ 

0 

˜ u F ( ̃  u ) d ̃  u = 

p + 1 

a 
. 

If the kernel takes the form of a delta function, namely 

F ( ̃  u ) = δ( ̃  u − τ ) , 
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