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a b s t r a c t 

Symptom severity affects disease transmission both by impacting contact rates, as well as by influenc- 

ing the probability of transmission given contact. This involves a trade-off between these two factors, as 

increased symptom severity will tend to decrease contact rates, but increase the probability of transmis- 

sion given contact (as pathogen shedding rates increase with symptom severity). This paper explores this 

trade-off between contact and transmission given contact, using a simple compartmental susceptible- 

infected-recovered type model. Under mild assumptions on how contact and transmission probability 

vary with symptom severity, we give sufficient, biologically intuitive criteria for when the basic reproduc- 

tion number varies non-monotonically with symptom severity. Multiple critical points are possible. We 

give a complete characterization of the region in parameter space where multiple critical points are lo- 

cated in the special case where contact rate decreases exponentially with symptom severity. We consider 

a multi-strain version of the model with complete cross-immunity and no super-infection. In this model, 

we prove that the strain with highest basic reproduction number drives the other strains to extinction. 

This has both evolutionary and epidemiological implications, including the possibility of an intervention 

paradoxically resulting in increased infection prevalence. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Many pathogens exhibit a wide range of symptom severity 

following infection, ranging from asymptomatic to severe. How 

does this variation affect disease dynamics? Symptom sever- 

ity is often correlated with pathogen loads and shedding rates 

[2,13,15,19,22,25,30,31] and thus to the probability of disease 

transmission given contact with a susceptible individual. On the 

other hand, disease symptoms will also influence contact rates of 

infected individuals, for example due to illness affecting an indi- 

vidual’s ability to attend school, go to work, travel, or have sexual 

encounters. There is thus a trade-off between transmissibility 

and contact, similar to the classic trade-off between transmission 

and host mortality in the study of pathogen virulence evolution 

[2,6,7,14,15,20] . Understanding this trade-off has both evolutionary 

and epidemiological implications, for example regarding strain 

competition and pathogen virulence, and for evaluating control 

strategies such as vaccination and chemotherapy. 

The purpose of this paper is to examine these questions using a 

simple mathematical model, with the following basic assumptions: 
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(i) infection can result in a range of symptoms, from mild to se- 

vere; (ii) the probability of transmission given contact is a mono- 

tone increasing function of symptom severity; (iii) contact rate is 

a monotone decreasing function with respect to symptom severity. 

To biologically motivate these assumptions, note that variation in 

symptoms is observed across taxa and disease transmission routes. 

Specific examples include El Tor cholera, with 75% asymptomatic, 

23% mild or moderate, and 2% severe infection [19] ; pertussis, 

where age and immunization status influence symptom sever- 

ity [21] ; influenza, where neuraminidase inhibitors can reduce 

symptom severity and duration [23] ; herpes simplex virus (HSV), 

with frequent subclinical viral shedding [31] , and many more. For 

(ii), pathogen shedding rates are often correlated with symptoms, 

both in magnitude (e.g. 10 3 vibrios per gram of stool for asymp- 

tomatic cholera patients [25] , versus 10 7 –10 8 vibrios per gram 

of stool for severely symptomatic individuals [19] ) and frequency 

(e.g. symptomatic individuals with HSV experienced more frequent 

shedding than asymptomatic individuals [31] ). Shedding rates re- 

late to transmission probabilities through dose-response curves, 

which are typically monotone functions of dose [18] . Specifics 

on how variation in shedding rates vary with symptom severity, 

and how this translates into corresponding variation in transmis- 

sion probability, will depend upon the shape of the dose-response 

curve for the pathogen in question. For example, asymptomatic 
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transmission of norovirus is believed widespread, due to compara- 

ble shedding rates of asymptomatic and symptomatic individuals, 

together with a very low infectious dose [26] . Regarding (iii), cer- 

tain types of contact clearly decrease with symptom severity, for 

example illness-induced absences from school or the workplace. 

Recent empirical studies examining how illness affects contact pat- 

terns include Chen et al. [9] and van Kerckhove et al. [33] . 

The model we consider is a simple extension of the classical 

susceptible-infected-recovered (SIR) ordinary differential equation 

model. The infected compartment is divided into two compart- 

ments, corresponding to infected individuals with mild ( I m 

) or se- 

vere ( I s ) disease symptoms. This model has been considered by 

others, for example by Brauer et al. [5] and Vivas-Barber et al. 

[35] in the context of influenza dynamics. What is new here is 

our consideration of the trade-off between contact and transmis- 

sibility in this setting. Specifically, we use this model to examine 

under what conditions this trade-off selects for intermediate levels 

of pathogen virulence, and what are the corresponding evolution- 

ary and epidemiological implications. In particular, we find condi- 

tions for which R 0 exhibits local maxima at intermediate symptom 

severity, and prove a competitive exclusion principle showing that 

for this model the pathogen strain with highest basic reproduction 

number will drive the other strains to extinction. 

The remainder of this paper is organized as follows. 

Section 2 presents the basic model together with analysis of 

the equations, including computation of R 0 and proving global 

stability for the system. In Section 3 , we explore the effects 

of the trade-off between contact and transmissibility on R 0 in 

detail. In particular, we give conditions for when R 0 varies non- 

monotonically with symptom severity, and discuss the number 

of critical points that can arise. Section 4 extends the model to 

include multiple pathogen strains. We prove that the highest R 0 

strain will drive the other strains to extinction. We also present an 

adaptive dynamics treatment of virulence evolution, together with 

simulations of evolutionary dynamics. The paper concludes with a 

discussion in Section 5 . 

2. Model 

We consider a simple extension of the basic susceptible- 

infected-recovered (SIR) framework by differentiating between 

mild ( I m 

) and severe ( I s ) infection. A fraction f of infected indi- 

viduals experience mild symptoms and enter the I m 

compartment 

following infection, with the remaining fraction 1 − f entering the 

I s class. Individuals experiencing mild versus severe symptoms 

have potentially different infectious periods (1/ γ m 

and 1/ γ s , 

respectively), and transmission parameters βm 

, βs . A flow diagram 

of the model is given in Fig. 1 . This model has been introduced 

previously in the literature, for example by Vivas-Barber et al. 

[35] . What is novel here is consideration of how symptom severity 

affects the transmission parameters βm 

, βs , through the trade-off

between contact and transmission given contact. 

The dynamics comply with the following equations: 

˙ S = d − dS − S(βm 

I m 

+ βs I s ) , 

˙ I m 

= f S(βm 

I m 

+ βs I s ) − (γm 

+ d) I m 

, 

˙ I s = (1 − f ) S(βm 

I m 

+ βs I s ) − (γs + d) I s , (1) 

where ̇ = 

d 
dt 

. Here we assume the population has a constant birth 

rate and natural death rate d . Because the equations of S , I m 

, I s are 

independent of the variable R , we only focus on them and ignore 

the dynamics of R . We further assume the total population size N 

is constant, let N = S + I m 

+ I s + R = 1 after scaling. Thus all vari- 

ables are fractions of the population. We consider the initial con- 

dition ( S, I m 

, I s )(0) ∈ �, where 

� := { (S, I m 

, I s ) ∈ [0 , 1] 3 : S > 0 , S + I m 

+ I s ≤ 1 } . 

Fig. 1. Flow diagram of the SI m I s R model (1) . 

The solutions of (1) with initial condition in � are positive and 

bounded, i.e., the system is well defined. 

To understand how the contact-transmission trade-off affects 

the parameters βm 

, βs in (1) , we will use the probability p of trans- 

mission given contact as a surrogate for symptom severity, allow- 

ing expression of β as a function of p . Then the force of infection 

term is c ( p ) pI , where the contact rate c ( p ) depends upon the prob- 

ability of transmission. The transmission parameters β can thus 

be written as the product of two factors, the contact rate c , times 

the probability p of transmission given contact with a susceptible 

individual. 

To incorporate the trade-off between contact and transmission 

given contact, we assume that p is a monotone increasing function 

of symptom severity, and c is monotone decreasing with symptom 

severity. Let p denote the transmission probability for individuals 

in I s , and let σp denote the transmission probability for individuals 

in I m 

, where 0 ≤ σ ≤ 1. The resulting transmission parameters for 

the mild and severe symptom classes are then: 

βm 

= c(σ p) σ p, 

βs = c(p) p. (2) 

The trade-off between transmissibility and contact affects the 

transmission parameters βm 

, βs (cf. (2) ). To understand the corre- 

sponding effect on the dynamics of system (1) , we will focus on 

how the trade-off affects the basic reproduction number R 0 . In 

fact we will see that R 0 determines both the long term dynamics 

of system (1) ( Theorem 1 ), as well as the outcome of multi-strain 

competition ( Theorem 2 ). We first establish some preliminary facts 

about system (1) . Let E 0 = (1 , 0 , 0) denote the disease-free equilib- 

rium (DFE). Using the next generation matrix approach to compute 

R 0 [11,32] gives: 

R 0 = f 
βm 

γm 

+ d 
+ (1 − f ) 

βs 

γs + d 
= fR 01 + (1 − f ) R 00 , (3) 

where R 01 and R 00 are the basic reproduction numbers corre- 

sponding to f = 1 and f = 0 , respectively. Hence R 0 is a linear 

combination of R 01 and R 00 . When R 0 > 1 , there exists an en- 

demic equilibrium (EE) E ∗ = (S ∗, I ∗m 

, I ∗s ) with 

S ∗ = 

1 

R 0 

, I ∗m 

= 

f 

γm 

+ d 
d 

(
1 − 1 

R 0 

)
, 

I ∗s = 

1 − f 

γs + d 
d 

(
1 − 1 

R 0 

)
. (4) 

From the following theorem we know that the global behavior 

of (1) is determined by the basic reproduction number R 0 . 

Theorem 1. Suppose d > 0, βm 

, βs ≥ 0, γ m 

, γ s > 0 and f ∈ [0, 1] . 

The dynamics of (1) with initial condition in � is one of the following 

scenarios: 

(a) If R 0 ≤ 1 , then the disease free equilibrium E 0 is globally 

stable. 

(b) If R 0 > 1 , then the endemic equilibrium E ∗ is globally stable. 
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