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a b s t r a c t 

An environmental random-effect over a deterministic population model of a resource ( e.g. , a fish stock) 

is introduced. It is assumed that the harvest activity is concentrated at a non-predetermined sequence of 

instants, at which the abundance reaches a certain predetermined level, then falls abruptly by a constant 

capture quota (pulse harvesting). So, the abundance is modeled by a stochastic impulsive type differential 

equation, incorporating a standard Brownian motion in the per capita rate of growth. With this random 

effect, the pulse times are “stopping times” of the stochastic process. The proof of the finite expectation 

of the next access time, i.e. , the feasibility of regulation, is the main result. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In the context of fishery resources, this article examines the 

feasibility of a management model. The amount captured is lim- 

ited to a fixed quota, followed by a period of closure that lasts un- 

til a certain threshold biomass is reached, at which time fishing is 

again allowed with the same fixed quota, and so on. It is a math- 

ematical continuous time model of one species, unstructured and 

non-deterministic. The main novelty is the combination of three 

rules in the dynamics of the abundance: (a) The addition to the 

growth rate of white noise with an amplitude proportional to the 

stock. (b) The consideration of an impulsive extraction at a certain 

threshold of the stock size. (c) A constant quota fishing policy. 

Although this article focuses on the population dynamics of a 

fishery resource which is defined by rules (a), (b) and (c), notice 

that the combination of these evolutionary (or similar) rules can 

model many processes in a variety of contexts, such as integrated 

control of pests [14,15] , bioreactors [10] or the treatment of dia- 

betes [12] . So, our research question and the resolution techniques 

that here are shown have a wider applicability, in the framework 

of state-dependent feedback control models. 

Concerning (a) : We have hypothesized a very general unstruc- 

tured stochastic version model by means of a diffusion process. 

It assumes that the infinitesimal increment (d N ( t )) of the abun- 

dance ( N ( t )) is the sum of underlying deterministic dynamics ten- 
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dencies ( N r ( N ) dt ) plus the magnitude of the stochastic fluctua- 

tions ( 
√ 

v (N(t)) d B (t) ). Among the sources of uncertainty to which 

a population may be subject, we will work with environmental 

stochasticity, i.e. , following [11] , where the infinitesimal variance 

v ( N ) can be modeled by σ 2 N 

2 . The environmental stochasticity in- 

volves considering the randomness resulting from any change that 

affects the whole population and that does not diminish with its 

growth. 

There is an abundant literature on population models in the 

presence of environmental noise. For models with this type of 

noise and capture, when the harvest is incorporated additively 

as a density-dependent rate which is subtracted from the natu- 

ral growth, an author to consider is C.A. Braumann, see [1–4] . In 

[1] , a quite general model for the growth of populations subjected 

to harvesting activities in a random environment is studied. There, 

conditions for non-extinction and for the existence of stationary 

distributions (where the noise intensity was constant or propor- 

tional to the rate of growth) are looked for. In [3] those results are 

generalized to density-dependent positive noise intensities of very 

general form. 

Concerning (b) : In the population models that we have cited, 

which combine harvesting and environmental stochasticity, the 

population abundance variable is of the continuous type. Here 

we will assume pulse harvesting between closures, which implies 

piecewise continuous curves for the stock, and other types of con- 

trol problems. 

Due to the development of techniques for locating resources 

and the deployability of techniques and fishing effort, the open 

http://dx.doi.org/10.1016/j.mbs.2016.04.001 

0025-5564/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.mbs.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2016.04.001&domain=pdf
mailto:fcordova@ucm.cl
http://dx.doi.org/10.1016/j.mbs.2016.04.001


72 R. Castro-Santis et al. / Mathematical Biosciences 277 (2016) 71–76 

harvesting intervals are considerably shorter compared to the clo- 

sures. Therefore, modeling the open season as an instant is real- 

istic enough. For impulsive harvesting see: [7–9,17–19] . Then, the 

amount harvested is just like a pulse in the abundance curve. 

A run for the resource is another explanation for an instanta- 

neous extraction of the quota. However, although the stock cap- 

tured could be previously agreed on, the run occurs when a strong 

competition to be first in the markets appears. 

Concerning (c) : The management rule assumes a continuous 

sampling of the abundance. The open season begins when the size 

of the stock reaches a certain value K 

+ and continues until a catch 

quota Q , 0 ≤ Q ≤ K 

+ is achieved. Then, a new closure starts from 

an abundance level K −, K − = K 

+ − Q, that does not compromise 

the survival of the resource by population uncertainty, i.e. , above 

the minimum viable population [5] . The quota is split between the 

different actors engaged in fishing effort and, when it is reached, 

a period of closure begins, lasting until the regulator again an- 

nounces a level of abundance K 

+ . We call this regulation the pulse 

constant quota fishing policy . 

Under this management, without stochasticity and with a time- 

autonomous growth law, models of this type have monotonic and 

bounded abundance curves (for values of K 

+ less than the carry- 

ing capacity), which determines closures with finite length. Closed 

seasons with finite duration could theoretically allow bioeconomic 

sustainability (preservation and exploitation). However, if we con- 

sider the hypothesis of a stochastic component, coming for exam- 

ple from experimental factors that determine the vital rates (the 

biotic potential and the environmental resistance), the finiteness 

of the closure is not assured a priori . The main novel problem that 

guided our research questions and the results was to find condi- 

tions on the model parameters, mainly on the noise level, for the 

viability (finite closures) of this fishery management. Notice that 

in [2] , in the framework of a continuous model, it is proved that 

in the case of a constant quota (a fixed amount harvested per unit 

of time) in a random environment, the population always goes to 

extinction. 

Theorem 1 is technical in nature and aims to prove that 

the model is well formulated. It demonstrates the existence and 

uniqueness (in the probabilistic sense) of the growth curves of the 

resource from an initial time and level of biomass. Its Corollary 1 

states that the model determines a finite population variance. 

The aim of Theorem 2 is similar to that of Theorem 1 , but this 

one proves the existence and uniqueness for all finite future time 

intervals. 

Lastly, the main result, Theorem 3 , shows that the expectation 

of a next opening time is finite, by assuming a condition relating 

the minimum per capita growth rate for population sizes under K 

+ 

with the noise amplitude parameter. 

2. Description of the model and the problem 

In the first subsection we describe the regulatory basic fishery 

model (deterministic) and we derive the properties of the length of 

the closed seasons. In the second one, we will introduce stochas- 

ticity into the growth rate and formulate, with details, the research 

question. In both cases, the main assumptions are highlighted. In 

all that follows we will denote by N ( t ) the abundance of the re- 

source at some instant t ∈ [0, ∞ ). 

2.1. The deterministic model 

With respect to the growth of the stock, without stochasticity, 

let us consider the hypothesis that follows: 

H1 : The per capita rate of growth (deterministic) is a continuous 

function r : [0 , ∞ ) → (−∞ , + ∞ ) , for which there exists a positive 

abundance level K , the carrying capacity, such that r ( N ) > 0 (re- 

spectively, equals 0, is less than 0) if N < K (respectively, equals K , 

is greater than K ). 

Remark 1. To support H1 , we consider the usual argument of 

resource limitation so that, when the population is larger, the 

amount of resources for individuals to survive and reproduce be- 

comes less, and therefore death rates go up and birth rates go 

down, leading to negative growth rates for sufficiently large pop- 

ulation sizes. The statistical evidence for this negative correlation 

between r ( ·) and N ( ·) is given in [16] . An example of r ( ·) satis- 

fying the above condition is the generalized logistic law : r(N) = 

r 0 (1 − (N/K) μ) ν , r 0 > 0, μ, ν ≥ 1. Hence, we have a very natural 

hypothesis. 

If a regulator fixes a minimum level of biomass for harvesting 

K 

+ , K 

+ < K, and a catch quota Q , the base deterministic model is { 

N 

′ (t) = r(N (t)) N (t) , N(t) < K 

+ , 
N(t + ) = K − = K 

+ − Q, N(t) = K 

+ , 
(t, N) ∈ [0 , ∞ ) × [0 , K 

+ ] . 
(1) 

where the solutions are piecewise continuous functions with con- 

tinuity on the left at their discontinuities. 

It is straightforward to prove, for any initial value N(0) = K − < 

K 

+ , that the abundance N ( ·) is an eventually periodic trajectory 

that attains all the values in [ K −, K 

+ ] . It is always strictly increas- 

ing except at a sequence of instants where its value is K 

+ , which 

abruptly drops by a quantity Q toward its new value K −. 

Denoting by { t k } k ≥ 0 the consecutive harvest times ( i.e. , N(t k ) = 

K 

+ ) from the first one t 0 ≥ 0, then N ( ·) has to satisfies the integral 

equation 

N(t) = K − exp 

(∫ t 

t k 

r(N(s )) ds 

)
, t ∈ (t k , t k +1 ] . (2) 

So, substituting t = t k +1 , using N(t k +1 ) = K 

+ and applying the 

Mean Value Theorem, we have that the length of the closures in 

the deterministic model is given by the expression T (K −, K 

+ ) = 

(1 /r(N 

∗)) ln (K 

+ /K −) , for some N 

∗ ∈ (K −, K 

+ ) . 
In order to get some bounds, defining a = min N∈ [ K −,K + ] r(N) and 

b = max N∈ [0 ,K + ] r(N) , we have 

K −e a (t−t k ) ≤ N(t) ≤ K −e b(t−t k ) , t ∈ (t k , t − k + 1 ] , k ≥ 0 , (3) 

and 

1 

b 
ln 

(
K 

+ 

K −

)
≤ T (K −, K 

+ ) ≤ 1 

a 
ln 

(
K 

+ 

K −

)
. (4) 

Note that, except for a time shift, all abundance curves are equal 

whatever the time-state initial condition is. 

This is a non-traditional situation of sustainability (or equilib- 

rium). 

2.2. The stochastic model 

We modify the deterministic model assuming the following hy- 

pothesis: 

H2 : The per capita rate of growth (stochastic) is obtained by in- 

troducing, into the first equation of the deterministic system de- 

fined by (1) , a random component, more precisely we will add to 

the per capita rate of growth r ( ·), defined in H1 , a noise of type 

σd B ( t )/d t , where B ( ·) is the standard Brownian motion, with the 

condition that there exists K 0 , K − < K 0 < K 

+ , such that 

min 

N∈ [0 ,K 0 ] 
{ r(N) } > 

σ 2 

2 

. (5) 

Remark 2. The inequality (5) is very natural in order to have a 

population dynamics not “phagocytized” by the noise. When r ( ·) is 
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