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a b s t r a c t 

Mathematical models have been used to study Ebola disease transmission dynamics and control for the 

recent epidemics in West Africa. Many of the models used in these studies are based on the model of 

Legrand et al. (2007), and most failed to accurately project the outbreak’s course (Butler, 2014). Although 

there could be many reasons for this, including incomplete and unreliable data on Ebola epidemiology 

and lack of empirical data on how disease-control measures quantitatively affect Ebola transmission, we 

examine the underlying assumptions of the Legrand model, and provide alternate formulations that are 

simpler and provide additional information regarding the epidemiology of Ebola during an outbreak. We 

developed three models with different assum ptions about disease stage durations, one of which simplifies 

to the Legrand model while the others have more realistic distributions. Control and basic reproduction 

numbers for all three models are derived and shown to provide threshold conditions for outbreak control 

and prevention. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Mathematical models have been very helpful in evaluating and 

identifying alternative strategies for infectious disease control and 

prevention. However, for the recent epidemics of Ebola in West 

Africa, the success of mathematical models has been very limited. 

As pointed out in Butler [2] , “mathematical models have failed to 

accurately project the outbreak’s course”. Although various reasons 

may explain why “on-the-ground data contradict the projections 

of published models”, including incomplete and unreliable data 

on Ebola epidemiology (especially in the hardest-hit areas) and 

lack of empirical data on how disease-control measures quanti- 

tatively affect Ebola transmission, it is important to examine the 

appropriateness of assumptions made in the models on which the 

projections are based. This is the objective of the current paper. 

There have been various modeling approaches, including determin- 

istic and stochastic models, or relatively simple models consisting 

of ordinary differential equations (ODEs) and more complicated 

agent-based models, among others. Many of the ODE models are 

variations of the model studied by Legrand et al. [8] , to which we 

refer as the Legrand model. It has been pointed out that some 
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of the assumptions made in the Legrand model may not have 

clear justifications (see, for example, Rivers et al. [11] ). Thus, it is 

important to examine the critical assumptions made in this model 

and better understand their possible impact on model outcomes. 

It often happens that, when a model is formulated, certain as- 

sumptions are made without consideration of their consequences. 

One of the most common assumptions made in ODE models is the 

exponential waiting time in disease stages. That is, the survival 

probability is described by a negative exponential function. For 

example, if the model assumes that an infected individual will 

recover at a constant per-capita rate γ , then it implicitly assumes 

that the infectious period is exponentially distributed, and the 

probability that an individual is still infectious s > 0 units of time 

since onset is given by 

P I (s ) = e −γ s . 

That is, if X I denotes the random variable for the waiting time in 

the infectious class I before exiting, then 

P [ X I > s ] = P I (s ) = e −γ s . 

In this case, the average waiting time before recovery (or the 

mean infectious period) is given by 

E [ X I ] = 

∫ ∞ 

0 

P I (s ) ds = 

1 

γ
. 
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Table 1 

Definition of symbols commonly used in all models including arbitrary stage distributions. 

Symbol Definition 

T P , T L , T M Random variables for the waiting times in I before moving to R, H, D , respectively 

X I Random variable for the overall time spent in the I compartment 

X H Random variable for the overall time spent in the H compartment 

P i ( s ) Probability that a living individual remains infectious s units of time since onset 

for Models I, II, III when i = 1 , 2 , 3 , respectively. That is, P [ T P i > s ] = P i (s ) 

L i ( s ) Probability of a living individual not being hospitalized s units of time since onset 

for Models I, II when i = 1 , 2 , respectively. That is, P [ T L i > s ] = L i (s ) 

M 1 ( s ) Probability of surviving the disease s units of time since onset for Model I. That is, 

P [ T M 1 > s ] = M 1 (s ) 

Q 3 ( s ) Probability of not having recovered s units of time after being hospitalized for Model III 

E [ T P ] Mean duration from onset to recovery (absent intervention or death) 

E [ T L ] Mean duration from onset to hospitalization (given hospitalized and not dead) 

E [ T M ] Mean duration between onset and death (absent intervention or recovery) 

E [ X I ] Mean duration in the I compartment (hospitalization and death included) 

E [ X H ] Mean duration in the H compartment (death included) 

D HR Mean duration from hospitalization to recovery 

D HD Mean duration from hospitalization to death 

γ IR = 1 / E [ T P ] , 

γ IH = 1 / E [ T L ] , 

γ ID = 1 / E [ T M ] , 

ω HR = 1 / D HR , per-capita rate of transition from H to R if the transition is exponential 

ω HD = 1 / D HD , per-capita rate of transition from H to D if the transition is exponential 

p Proportion hospitalized (dependent on control effort) 

f Probability of death (with or without hospitalization) 

γ = 1 / E [ X I ] , per-capita rate of exiting I if X I is exponential 

Because of the memoryless property of exponential distributions, 

this leads to ODE models that are easy to analyze. However, when 

isolation of infectious individuals is considered as a control strat- 

egy, models with exponentially distributed infectious stages can 

lead to misleading or even incorrect evaluations of effectiveness 

(see, e.g., Feng et al. [4] ). Similar results hold for discrete-time 

models, in which the analogue of the exponential distribution is 

geometric [5,6] . These findings demonstrate some of the draw- 

backs of ODEs models with exponentially-distributed disease 

stages. 

It is not clearly specified in the Legrand model (see model 

(A.1) in Appendix A ) what underlying assumptions have been 

made regarding the distributions of waiting times for epidemi- 

ological processes such as recovery (transition from I to R ), 

hospitalization (transition from I to H ), and death (transition from 

I to D ). For ease of reference, we refer to these three transitions as 

IR, IH, and ID, respectively. In addition, the two possible transitions 

for hospitalized individuals, recovery or death, are denoted by HR 

and HD. Let T P , T L and T M 

denote random variables for the waiting 

times associated with IR, IH and ID, and let the associated survival 

functions be denoted by P ( t ), L ( t ) and M ( t ), respectively. The mean 

durations of these transitions are respectively E [ T P ] , E [ T L ] , E [ T D ] . 

Similarly, let D HR and D HD denote the mean durations from hospi- 

talization to recovery or death, respectively. For ease of comparison 

between models presented in this paper, we list in Table 1 some 

of the quantities that play common roles and have clear biological 

meaning in these models. Several of these quantities should have 

values that are independent of model assumptions, including 

the mean duration (absent intervention) from onset to recovery 

E [ T P ] , the probability of hospitalization p , and the probability of 

death f . 

At first glance (A.1) (see Appendix A ), it may seem that the 

transitions IR, IH and ID are assumed to be independent in the 

Legrand model and the waiting times are all exponentially dis- 

tributed with mean durations 1/ γ IR , 1/ γ IH and 1/ γ ID , respectively. 

If so, however, the mean overall rate of exiting the I compartment 

would not be given by � in (A.5) (see Table 2 and Appendix A ). 

In fact, if we denote the survival functions by P (t) = e −γIR t , 

L (t) = e −γIH t and M(t) = e −γID t , respectively, then the overall 

waiting time in I is 

P [ min { T P , T L , T M 

} > t] = P [ { T P > t} ∩ { T L > t} ∩ { T M 

> t} ] 
= P [ T P > t] P [ T L > t] P [ T M 

> t] . 

Thus, the mean overall time spent in the I compartment is 

E [ min { T P , T L , T M 

} ] = 

∫ ∞ 

0 

P (t) L (t) M(t) dt = 

1 

γIR + γIH + γID 

. 

It follows that the overall rate of exiting I is γIR + γIH + γID , which 

is not a weighted average, unlike � in (A.5) for the Legrand model. 

To fully understand the underlying assumptions used in the 

Legrand model, we develop three models based on general dis- 

tributions for the waiting times of key transitions and consider 

various assumptions about their relationships. We demonstrate 

that, when specific stage distributions are considered, one of 

these general models reduces to the Legrand model (A.1) . The 

models that we develop in this paper under arbitrarily distributed 

disease stages consist of integro-differential equations. It has been 

asserted that, when the arbitrary distributions are replaced by 

Gamma distributions, the so-called “linear chain trick” can be 

applied to reduce the integral equations to ODEs (MacDonald 

[10] , Hethcote and Tudor [7] , Lloyd [9] ). However, apart from a 

proof of the linear chain trick in a simpler setting by Smith [13, 

Section 7.1] , a rigorous derivation of this fact for more complex 

epidemic models, such as the one in this paper, is lacking. In this 

paper, we provide a derivation (see Section 3 ). 

We also provide a simpler (but equivalent) formulation of the 

Legrand model. In particular, we define the overall waiting time in 

the I class to be the weighted combination of waiting times E [ T P ] , 

E [ T L ] and E [ T M 

] of the following form: 

E [ X I ] = pE [ T H ] + (1 − p) f E [ T M 

] + (1 − p)(1 − f ) E [ T P ] , (1) 

where p and f denote the probability of hospitalization and case- 

fatality, respectively. Using this assumption, as shown in Section 2 , 

we obtain a much simpler formulation of the Legrand model (A.1) . 

This facilitates identification of its underlying assumptions, as 

illustrated in Sections 3 and 4 . 

Our paper is organized as follows. In Section 2 , we present an 

equivalent Legrand model with a simpler formulation. Section 3 is 

devoted to the derivation of three models with arbitrarily dis- 

tributed disease stages under various assumptions about the re- 

lationships between the overall waiting time in the I class and 
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