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a b s t r a c t 

Markov models are ubiquitously used to represent the function of single ion channels. However, solving 

the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp 

recordings remains challenging, particularly for channels involving complex gating processes. Methods for 

solving the inverse problem are generally based on data from voltage clamp measurements. Here, we de- 

scribe an alternative approach to this problem based on measurements of voltage traces. The voltage 

traces define probability density functions of the functional states of an ion channel. These probability 

density functions can also be computed by solving a deterministic system of partial differential equations. 

The inversion is based on tuning the rates of the Markov models used in the deterministic system of par- 

tial differential equations such that the solution mimics the properties of the probability density function 

gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a 

cost function to measure the difference between the deterministic solution and the solution based on 

experimental data. By evoking the properties of this function, it is possible to infer whether the rates of 

the Markov model are identifiable by our method. We present applications to Markov model well-known 

from the literature. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

Numerous mechanisms in cells are fueled by the energy con- 

tained in concentration gradients that exist across the cell mem- 

brane. One such process is the electrical signaling that results 

from ionic fluxes carried by specialized membrane proteins, col- 

lectively termed ion channels. Cell membranes are densely popu- 

lated by ion channels, which fluctuate between different states in a 

stochastic manner that depends on the charge difference across the 

membrane (the membrane potential). These fluctuations between 

the various states are commonly represented by continuous-time 

Markov models; see e.g. [1–4] . Markov models have been success- 

fully used for half a century and offer great flexibility for precisely 

describing the functional states of a channel. Given the structure 

and rates of the Markov model, it is straightforward to use simu- 
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lations to study channel behavior. But the inverse problem, which 

seeks to infer the structure and rates of the Markov model from 

single-channel recordings, is much more challenging and remains 

a field of active research; see e.g. [5–9] . 

Single channel recording was first demonstrated in the semi- 

nal work by Sakmann and Neher; see [10,11] . Many of the prin- 

ciples used to deduce the form and rates of Markov models 

based on single channel data were developed by Colquhoun and 

Hawkes beginning almost forty years ago; see [12,13] , and are clas- 

sically summarized in chapter 18 of [14] . More recently, Qin et al. 

[15,16] developed maximum likelihood (MLE) approaches for defin- 

ing the most probable hidden Markov model for a given dataset. 

These algorithms form the core of the open source QuB soft- 

ware package, which is available to the community, and contains 

tools for automated Markov model construction and parameteriza- 

tion; see Nicolai and Sachs [17] . Furthermore, Markov chain Monte 

Carlo (MCMC) fitting has been used to solve the inversion prob- 

lem for models of intracellular calcium channels, which poses the 

same mathematical problem as the gating of voltage-dependent 
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channels, see [6–9,18–20] . While both the MLE and MCMC ap- 

proaches have been used to good effect, each has specific short- 

comings [7] , and a robust method for determining hidden Markov 

model structure from single-channel data remains a priority for the 

field. 

The problem of identifiability of a model based on recordings of 

conducting and non-conducting states is of great importance and 

has been addressed by many authors. Characterizations of identi- 

fiable models and non-identifiable models have been provided by 

e.g. Fredkin and Rice [21] and more recently by Siekmann et al. 

[7] and Hines et al. [8] . These results, however, address the clas- 

sical problem based on voltage clamped data and the results are 

therefore not automatically applicable to the case under consider- 

ation in the present paper. 

Prior effort s to address the problem of identifying the rates 

of Markov models have been based on conventional experimen- 

tal procedures for recording single-channel activity. That is, by fit- 

ting the binary changes in transmembrane current associated with 

channel opening and closure under conditions where transmem- 

brane potential is clamped by the experimenter. The purpose of 

the present paper is to describe a fundamentally different ap- 

proach, which involves an analysis procedure for defining a hid- 

den Markov model from measurements of time-varying transmem- 

brane potential in current clamped single ion channels. To the 

best of our knowledge, this is the first attempt to identify Markov 

models based on such voltage traces of single channel data. A 

similar approach has previously been applied for identification of 

Markov models from voltage recordings made in whole-cells; see 

e.g. Milescu et al. [22] . Following the tradition in the field, we 

present the method using simulated data. It turns out that the 

methodology described here also enable us to address the question 

of identifiability. We demonstrate use of the method to compute 

rates of a Markov model and we will show to determine whether 

the computed rates are unique. 

2. Methods 

Our aim is to devise an alternative method for inverting Markov 

models. The inversion will be based on time-traces of the trans- 

membrane potential of single ion-channels. The traces used in our 

analysis will be pseudo-experimental data generated by a dynam- 

ical model formulated in terms of an ordinary differential equa- 

tion including a stochastic term. The stochastic term is governed 

by a Markov model with rate-functions expressing the probability 

of going from one state to another state. The inversion problem is 

to determine these rate-functions based on observations of record- 

ings of the time-traces of the transmembrane potential. 

By running numerous Monte Carlo simulations using the 

stochastic differential equation, we can compute probability den- 

sity functions by gathering the simulation results in histograms. 

The same probability density functions can be computed by solv- 

ing a deterministic system of partial differential equations, see 

e.g. Smith [2] , Bressloff [3] or Tveito and Lines [4] . In this report 

we will use the simulation results based on the stochastic differ- 

ential equations as pseudo-experimental data in terms of time- 

dependent voltage traces represented by histograms. The method 

of inversion is to adjust the parameters of the system of determin- 

istic partial differential equation so that the solution of this sys- 

tem is as close as possible to the histograms representing pseudo- 

experimental data. The adjustment will be performed in term of 

minimizing a cost-function. 

The method is described for Markov models of the potassium 

channel, but the method is quite general and can, in principle, be 

applied to Markov models of any ion channel. 

2.1. Markov models 

Let us first consider a Markov model on its simplest possible 

form; 

C 
α
�
β

O. (1) 

Here C and O denote the closed and open states, respectively. The 

rates α and β represent the probability of leaving a state in the 

sense that, for a small time-step �t , we have 

α�t = Prob [ S(t + �t) = O | S(t) = C ] 

and 

β�t = Prob [ S(t + �t) = C | S(t) = O ] , 

respectively. The problem of inversion for this simple model is to 

find the rates α and β such that the Markov model represents the 

behavior of the model as good as possible. It is well-known that 

the probabilities o = o(t) and c = c(t) of being in the open ( O ) or 

closed state ( C ) evolve according to the following system of ordi- 

nary differential equations (see e.g. Keener and Sneyd [1] ), 

o ′ = αc − βo, 

c ′ = βo − αc. 

Since the sum of the probabilities add up to one, we can reduce 

this system to a single equation that is easily solved. Experimental 

data on probability of being in the open or closed state can thus 

be used to find determine the rates α and β . 

In principle this approach is straightforward to generalize to 

much more complex Markov models involving many states. Gen- 

erally, the system of ordinary differential equations governing the 

vector v of probabilities of occupying different states is given by 

p ′ = Ap. 

Here, the matrix A contains the rates of the Markov model and 

the problem is to compute these rates. For a matrix with constant 

coefficients, the solution of this problem can, in principle, always 

be found on the form 

p(t) = exp (A ) p 0 , 

where p 0 is the vector of probabilities at time t = 0 . In principle, 

this formula can be used to deduce the rates of the Markov model, 

but severe difficulties arise due to inherent instabilities in the in- 

version process. This approach to inversion is based on experimen- 

tal data with clamped transmembrane potential. Our method is 

based on data where the transmembrane potential is recorded. 

2.2. Stochastic model of the transmembrane potential 

For a single channel, with the initial condition v (0) = v 0 , the 

dynamics of the transmembrane potential v̄ can be modeled as fol- 

lows (see e.g. [2–4] ), 

C ̄v ′ = −γ g K ( ̄v − v K ) − g S ( ̄v − v S ) − I 0 (2) 

where C is the specific capacitance of the preparation, v K , v S are 

the Nernst potentials for potassium and for the seal current, re- 

spectively, γ is a stochastic variable depending on the state of the 

channel, and I 0 = I 0 (t) is an applied current; note also that the 

bar on v̄ is used to indicate that this is a stochastic variable. The 

dynamics of γ are governed by a Markov model, and in the for- 

ward simulations, the rates of the Markov model are assumed to 

be given. Additionally, the expression for seal current is used to 

simulate under as realistic clamp conditions as possible, where a 

proportion of any applied current will be lost to ground through 

a conductance that exists in parallel to the membrane patch. Intu- 

itively, this conductance represents the current leak between the 
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