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a b s t r a c t 

The paper aims at providing a general theoretical frame bridging the macroscopic growth law with the com- 

plex heterogeneous structure of real tumors. We apply the “Phenomenological Universality” approach to 

model the growth of cancer cells accounting for “populations”, which are defined not as biologically pre- 

defined cellular ensemble but as groups of cells behaving homogeneously with respect to their position (e.g. 

primary or metastatic tumor), growth characteristics, response to treatment, etc. Populations may mutually 

interact, limit each other their growth or even mutate into another population. To keep the description as 

simple and manageable as possible only two populations are considered, but the extension to a multiplicity 

of cell populations is straightforward. 

Our findings indicate that the eradication of the metastatic population is much more critical in the pres- 

ence of mutations, either spontaneous or therapy-induced. Furthermore, a treatment that eradicates only the 

primary tumor, having a low kill rate on the metastases, is ultimately not successful but promotes a “growth 

spurt” in the latter. 

© 2015 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

Tumor is a very inhomogeneous system of cells [1] dynamically 

interacting and adapting to their environment. Normally two or more 

cell populations coexist, e.g. the primary tumor and one or more sec- 

ondary ones, generated by cells of the primary tumor which moved 

to lymph nodes or distant organs. Adaptation to different environ- 

ments normally modifies the cells characteristics, originating a dif- 

ferent cell population. To account for any heterogeneity among cells, 

due to whatever cause or nature, different cell populations are con- 

sidered. The transformation of a given population into another one 

is termed mutation whenever the phenotypic modifications reflect 

genetic alterations. Sometimes such mutations may be induced or 

modulated in response to therapies (see [2] in case of the prostate 

cancer). As a matter of fact, primary tumors are normally treated by 

surgical eradication or radical radio therapy. When unsuccessful, tu- 

mor seeds may survive generating a local recurrence (whose cells 

may be somewhat different from their progenitor, adding a new cell 

population into the picture). At the same time, in order to prevent 
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or, more often, to control distant tumor spread, systemic therapies 

are delivered, generally called chemo-therapies. Nowadays, also hor- 

mone therapies are very common to contrast the growth of hormone- 

sensitive tumors, like breast and prostate cancer. In this last case 

it is well known that, after an initial reduction of the tumor vol- 

ume, the growth of hormone-resistant cells will finally induce an al- 

most uncontrollable tumor saturation [2] . Any realistic model should 

therefore take into account the appearance of therapy-induced cell 

mutations. 

The key question in the modeling strategy is how strong the in- 

terplay among different cell populations must be. Since they are part 

of the same organism, a “minimal” hypothesis states that they share 

the same overall energetic and physical resources. Since the total tu- 

mor carrying capacity is limited, it is therefore reasonable to assume 

that the growth of both cell populations is constrained [3,4] . How- 

ever, several authors (see for instance [5,6] ) have speculated about 

the possibility that the whole tumor (i.e primary, nodes and metas- 

tases) behaves as a “coherent body”. Experimental evidences of en- 

hanced proliferation of the dormant secondary tumors following the 

surgical excision of the primary one have been shown in both animal 

[7,8] and human [9,10] models. A recent model of [3] shows that the 

effect of primary tumor resection on the growth of bone metastases is 

not always favorable: since large tumors limit the resources available 
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for the growth of smaller ones, the resection of the primary tumor 

may trigger the proliferation of dormant tumors by promoting their 

vascularization and growth. 

The biological mechanisms underlying the above macroscopic 

findings are still debated. The simultaneous production of growth 

hormones and angiogenic factors as well as of their inhibitors by 

the primary tumor, and their different stability (normally the in- 

hibitors have a longer lifetime) may explain the successful control of 

the metastatic progression until the primary tumor is present. Also 

the post-surgery wound healing processes and the resulting local 

and systemic inflammation may be responsible for secondary tumor 

growth [11,12] . 

We investigate here the equilibrium conditions of two asymmetri- 

cal cell populations, paying close attention to their stability or insta- 

bility, which are assumed to predict the successful cure or the fatal 

evolution of the tumor. The parameter conditions ensuring the stable 

configuration, i.e. the stop of the tumor growth, are outlined in detail. 

The paper is organized as follows. In Section 2 the governing equa- 

tions for the cell populations growth, with or without therapeutic in- 

terventions, are presented. In Section 3 two non-mutating popula- 

tions are investigated, assuming as mutual interplay the constraint 

on the total carrying capacity, accounting for the geometrical re- 

strictions and the overall environmental conditions, such as growth 

factor release and energetic resources. The response to therapies is 

investigated in Section 4 . Section 5 considers the spontaneous or 

therapy-induced emergence of a mutated population. In Section 6 the 

results are collected in a phase-space diagram encompassing real 

clinical situations occurring in a large population of patients at dif- 

ferent stages of tumor evolution. We focus on possible practical ap- 

plications as the case of recurrent prostate cancer, where previously 

prostectomized patients are treated with Androgen Deprivation Ther- 

apy (ADT). Such therapy is very effective on the initially predominant 

hormone-sensitive cancer cells, but promotes a mutation into non- 

hormone sensitive cells and finally fails in controlling tumor prolifer- 

ation. A final discussion concludes the paper. 

2. The model 

The recently proposed Phenomenological Universalities (PUN) ap- 

proach [13–16] actually includes most of the growth models pro- 

posed in the past within a single mathematical frame: they range 

from simple exponential to logistics and Gompertzian growth, to the 

ontogenetic model of [17] . PUN was successfully applied to describe 

the tumor multi-passage transplant in mice [6] , external stresses lim- 

iting tumor invasiveness [18] , multi-cellular tumor spheroids [19] as 

well as to simulate the response to selected therapies [20] . Applica- 

tions to other growth phenomena, such as human height from birth 

to maturity [21] show that the model may easily include “growth 

spurts”provided a “piece-wise” formulation is used. In this setting, 

each time interval is characterized by its own specific parameter val- 

ues. Extensions of PUN to multiple cells populations have been pro- 

posed as well, e.g. proposing a “vector” PUN model [22] . 

The PUN approach describes tumor growth in a very general way, 

see [15,16] for details: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

dN(t)

dt 
= c(t )N(t )

dc(t)

dt 
= 

n ∑ 

i =0 

βi c 
i 

(1) 

where N is the cancer cells population, c ( t ) is the growth rate function 

and n is the degree of the Taylor expansion. This approach generalizes 

the most used equations in population growth, in fact: in the case 

n = 0 , c ( t ) constant, N grows following an exponential law; for n = 1 , 

it follows a Gompertzian law and for n = 2 a West/logistic growth law, 

[23] . 

2.1. U 0 – Malthus growth law 

The first approximation of tumor growth is the exponential law; 

in fact, at an initial stage, tumor cells duplicate very fast with a fixed 

doubling time (i.e. the time in which the cancer mass doubles) which 

estimates the rate of the exponential growth. 

Using PUN notation, we see that, for n = 0 , from (1) the deriva- 

tive of c is a constant; assuming it vanishes, β0 = 0 , it follows that 

c(t) = c 0 which in turn implies N(t) = e c 0 t , upon integration of the 

first (1) . For c 0 > 0, the model exhibits an unbounded population 

growth. However, real tumors cannot expand indefinitely because 

of physical constraints. Thus, in the subsequent sections we will not 

consider this unrealistic case anymore. 

2.2. U 1 – Gompertzian growth law 

This function describes the tumor development more realistically. 

Indeed, following an initial exponential unrestricted phase, due to 

lack of nutrients and space the tumor population growth progres- 

sively slows down until finally the tumor population attains its car- 

rying capacity. The mathematics reflects the biological processes, i.e. 

the cancer core becomes hypoxic and necrotic while the proliferat- 

ing tumor border may reach some physical barrier such as tissue or 

bones and it stops growing. The dynamic system, in the U 1 case, is: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dN(t)

dt 
= c(t )N(t )

dc(t)

dt 
= β1 c + β0 

Integrating the second equation by separation of variables, setting 

β0 = 0 , c 0 = e −β1 t 0 β−1 
1 

, β = β1 < 0 and then substituting c ( t ) into 

the first one we have: 

dN(t)

dt 
= c 0 e 

βt N(t) (2) 

whose solution is: 

N(t) = N 0 e 
c 0 
β

(e βt −1 )
. (3) 

where β is inversely proportional to the tumor carrying capacity and 

c 0 denotes the growth rate. Note that in this case the carrying capacity 

depends on the initial condition N 0 . 

To emphasize the role of the carrying capacity, Eq. (3) can be 

rewritten as: 

N(t) = N ∞ 

e ze −rt 

(4) 

where N ∞ 

= lim t→∞ 

N(t) = N 0 e 
− c 0 

β is the carrying capacity and r the 

exponential growth rate. We can easily transform (3) into (4) back 

and forth by setting r = −β, N ∞ 

= N 0 e 
− c 0 

β and z = 

c 0 
β

. 

2.3. U 2 – West growth law 

West and collaborators have published their allometric theory 

to give a robust physical foundation to the empirical relationship 

between the basal metabolic rate and the 3/4 power of the mass 

observed in all living beings (Kleiber scaling law, [24] ) This formal- 

ism has been extended by [15] for tumors. In addition to the carry- 

ing capacity, a second independent parameter relating the cellular 

metabolic energy and the energy required for duplication comes into 

play. Also this function could be derived by the PUN approach, in fact 

for n = 2 we have: 

dc(t)

dt 
= β0 + β1 c + β2 c 

2 . 

This is a very general equation that defines a class of functions; in 

particular, choosing β2 = − 1 
4 , t 0 = 0 and β1 inversely proportional to 
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