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a b s t r a c t

This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera

ordinary differential equation (ODE) model that incorporates human behavior via modeling disease preva-

lence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and

global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend

the ODE model to a reaction–convection–diffusion partial differential equation (PDE) model that accounts

for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed

by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numeri-

cally evaluating the basic reproduction number of the PDE model. Our results show that human behavior

can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection

(characterized by the basic reproduction number).

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mathematical modeling, analysis and simulation for infectious

diseases have long provided useful insight into disease dynamics that

could guide public health administration for designing effective pre-

vention and control measures against epidemics. Over the past few

decades, compartmental models such as SIR (susceptible-infected-

recovered) and SEIR (susceptible-exposed-infected-recovered) and

their threshold dynamics have been established as the standard

framework in mathematical epidemiology (see review [33] and

references therein). Meanwhile, numerous extensions of these basic

mathematical models have been proposed that incorporate more

detailed biological, ecological, demographic, and geographical in-

formation, such as spatial heterogeneities, age-structures, seasonal

variations, and others, with significant advances in almost all of these

directions.

The mechanisms of disease transmission and spread are usually

complex and possibly involve social, economic and psychological fac-

tors in addition to the intrinsic disease biology and ecology. In par-

ticular, human behavior could have significant influence on disease

transmission and vice versa. For example, individuals avoid close con-

∗ Corresponding author. Tel.: +1 415 502 0275; fax: +1 415 476 0527.

E-mail addresses: xueying@math.wsu.edu (X. Wang), daozhou.gao@ucsf.edu

(D. Gao), jin-wang02@utc.edu (J. Wang).

tact with obviously sick persons to protect themselves and therefore

the frequency and strength of contacts between uninfected and in-

fected people generally are reduced. In case of severe disease out-

breaks, people will attempt to change their routine schedules (includ-

ing, but not limited to, work, recreation, and travel), wash hands often

with soap and clean water, receive vaccines or preventive treatment

if available, so as to minimize their risk of infection. Nowadays, the

fast growth of information technology allows prompt and up-to-date

reports on the details of disease outbreaks from internet (especially

those popular social networking sites), newspaper, television and ra-

dio stations, and government announcements. Consequently, these

media coverage and health education will, to a large extent, affect

human behavior which can lead to a significant reduction in outbreak

morbidity and mortality.

It is clear that human behavior could play an important role in

shaping the complex epidemic and endemic pattern of a disease

[3,26]. There are an increasing number of studies on the mathemati-

cal epidemiological modeling of human behavior [13]. Funk et al. [14]

classified epidemic models under the impact of behavioral changes

into belief-based and prevalence-based. Cui et al. [11] proposed a

simple SIS model that incorporated the effects of media coverage.

Gao and Ruan [16] extended the work in [11] to a patch model with

non-constant transmission coefficients. Liu et al. [25] investigated the

psychological impact on disease dynamics that involve multiple out-

breaks and sustained infections. Collinson and Heffernan [10] found

that the outcome of an epidemic model with the effects of mass
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media is strongly affected by the choice of media function. Recently,

Chowell et al. [9] fitted logistic growth models to the cumulative

reported number of Ebola cases to reflect changes in population

behavior and interventions. In addition, Mummert and Weiss [27]

modeled and analyzed the social distancing strategies in limiting dis-

ease transmission and spread, particularly for short-term outbreaks.

A goal of this paper is to improve our quantitative understanding

of the impact of human behavior on disease dynamics. Particularly,

we will incorporate human behavior into mathematical modeling of

cholera, a severe water-borne disease caused by the bacterium Vibrio

cholerae. There have been many studies published in recent years on

cholera modeling and analysis (see, e.g., [5–7,17,28,29,34,36–38,41–

44]), yet, to our knowledge, few of these have specifically taken hu-

man behavior into consideration (see Capasso [5,6], Al-Arydah et al.

[1], and Carpenter [7]). In the present paper, we will modify the

cholera model proposed by Mukandavire et al. [28] to explicitly in-

clude disease prevalence dependent contact rates (for both the di-

rect and indirect transmissions) and host shedding rate, and analyze

the resulting dynamics. Particularly, we will show that the reduc-

tion of contact rates due to human behavior leads to reduced epi-

demic and endemic sizes. We will then extend the ODE system to a

reaction–convection–diffusion PDE system to investigate the interac-

tion among human behavior, host and pathogen movement, and the

disease intrinsic transmission dynamics. We will pay special atten-

tion to the traveling wave solutions and threshold dynamics of the

PDE model. Our study regarding cholera spatial dynamics is different

from the work of Bertuzzo et al. [4,31]. Our PDE model formulation

is more general in terms of inclusion of multiple transmission path-

ways. Specifically, our model incorporates both direct (or, human-to-

human) and indirect (or, environment-to-human) transmission path-

ways whereas their model has considered only indirect transmission

route. The scope of our work is also different from that in [4,31] as our

focus is on the impact of human behavior on cholera transmission.

We organize the remainder of the paper as follows. In Section 2

we introduce the ODE cholera model that incorporates human be-

havior, with relevant notations and assumptions. We then conduct a

thorough epidemic and endemic analysis of the model in Section 3,

for both local and global dynamics. In Section 4 we present the PDE

model and investigate its traveling wave solutions under the impact

of human behavior, followed by a threshold dynamics analysis in

Section 5. We conclude the paper in Section 6 with discussion.

2. Model formulation

The cholera model proposed in [28] incorporates both the

environment-to-human (or, indirect) and human-to-human (or,

direct) infection routes, and all the model parameters take constant

values. The model has standard SIR (susceptible-infected-recovered)

compartments, with an additional compartment B that denotes the

concentration of the bacteria V. cholerae in the contaminated water.

We now extend this model by assuming that the direct and indirect

transmission rates and the bacterial shedding rate are all dependent

on the number of infectives, representing the influence of human

behavior change due to health education, hygiene and sanitation

practices. In addition, we assume that recovered individuals become

susceptible to cholera again after a certain period of time, taking into

account the immunity loss in the real life. The new model takes the

form

dS

dt
= μN − β1(I)SI − β2(I)

SB

B + K
− μS + σR,

dI

dt
= β1(I)SI + β2(I)

SB

B + K
− (γ + μ)I,

dR

dt
= γ I − (μ + σ)R,

dB

dt
= β3(I)I − δB. (2.1)

The total population, N = S + I + R, is fixed. The definition and base

values of the model parameters are provided in Appendix A, Table A.1.

The most important feature of our model is the incorporation of

disease prevalence dependent contact rates and host shedding rate.

For i = 1, 2, 3, we formulate that

βi(I) = ai − bimi(I) ,

where ai is the usual contact rate (or shedding rate) without consid-

ering the influence of human behavior, bi is the maximum reduced

contact rate due to behavior change, and mi(I) is a saturation func-

tion. These functions satisfy

ai > bi ≥ 0, mi(I) ∈ C1([0, Iu]) with m′
i(I) ≥ 0,

mi(0) = 0, 0 < mi(Iu) ≤ 1,

where Iu ∈ (0, N] is an upper bound of the solution {I(t): t ≥ 0}. Some

typical examples of m(I) with such properties are 1 − k/(k + In) with

k > 0 and n > 0, 1 − e−kI with k > 0, and I/Iu [16].

One can easily verify that the disease-free equilibrium is

given by (N, 0, 0, 0). Let F denote the matrix characterizing the gen-

eration of secondary infection, and V denote the matrix depicting

transition rates between compartments. Based on the standard next-

generation matrix technique [12,40] and our assumptions, matrices F

and V can be written as:

F =
[

a1N a2N/K

a3 0

]
and V =

[
μ + γ 0

0 δ

]
.

The next generation matrix is

M = FV −1 =

⎡
⎢⎣

a1N

μ + γ

a2N

δK
a3

μ + γ
0

⎤
⎥⎦.

Hence, the basic reproduction number R0 of model (2.1) is given by

R0 = RODE
0 = ρ(M)

= 1

2

⎡
⎣ a1N

μ + γ
+

√(
a1N

μ + γ

)2

+ 4
a2a3N

δ(μ + γ )K

⎤
⎦.

Here ρ denotes the spectral radius. Note that the basic reproduction

number R0 is independent of bi for i = 1, 2, 3. This is due to our model

assumption that behavior change only starts when the disease has al-

ready started and R0 is calculated at the disease-free state. An impli-

cation is that behavior change alone is usually not sufficient to ter-

minate an outbreak. Nevertheless, previous studies have shown that

it can significantly reduce the burden of an endemic disease [16]. We

will demonstrate this for our cholera model in the next section.

Meanwhile, if disease control is targeted at a particular host type,

a useful threshold is known as the type reproduction number, T. The

type reproduction number defines the expected number of secondary

infective cases of a particular population type caused by a typical pri-

mary case in a completely susceptible population [18,32]. It is an ex-

tension of the basic reproduction number R0. Particularly, the type

reproduction number T1 for control of infection among humans is de-

fined in the references [18,32] as

T1 = eT
1M(I − (I − P1)M)−1e1,

provided the spectral radius of matrix (I − P1)M is less than one, i.e.,

ρ
(
(I − P1)M

)
< 1. Here I is the 2 × 2 identity matrix, vectors e1 =

(1, 0)T , M is the next generation matrix, and P1 is the 2 × 2 projec-

tion matrix with all zero entries except that the (1,1) entry is 1. Write
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