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a b s t r a c t

The Bak–Sneppen model is an abstract representation of a biological system that evolves according to the

Darwinian principles of random mutation and selection. The species in the system are characterized by a

numerical fitness value between zero and one. We show that in the case of five species the steady-state fitness

distribution can be obtained as a solution to a linear differential equation of order five with hypergeometric

coefficients. Similar representations for the asymptotic fitness distribution in larger systems may help pave

the way towards a resolution of the question of whether or not, in the limit of infinitely many species, the

fitness is asymptotically uniformly distributed on the interval [fc, 1] with fc � 2/3.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Bak–Sneppen (BS) model is an abstract representation of a

biological system that evolves according to the Darwinian principles

of random mutation and natural selection. It was introduced in [2]

in the context of self-organized criticality in systems with spatial

interactions.

Despite its simplicity, the BS model captures some of the features

that are believed to be characteristic of evolving biological systems.

In particular, it predicts evolutionary activity on all time scales with

long periods of relative stasis interrupted by bursts of activities, re-

ferred to as avalanches. As a consequence of the absence of a char-

acteristic time scale, evolutionary dynamics in the BS model display

long-range dependence in both the temporal and the spatial domain.

It is thus suitable as an abstract representation of systems in punc-

tuated equilibrium, a concept that was introduced in [6] to explain

the patterns observed in fossil records. For a more thorough discus-

sion of these ideas, and for applications of the notion of punctu-

ated equilibrium in other scientific disciplines we refer the reader

to [12].

In addition to its usefulness in abstractly representing some key

features of paleontology and macro-evolution, the BS model has also
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been employed to analyze the evolution of bacteria in a controlled,

competitive environment. In a series of key experiments [14], Lenski

and collaborators cultivated twelve initially identical populations of

an E. coli strain over several years and conserved samples at regular

time intervals. They then determined the relative fitness of the con-

served samples by putting them into direct competition with a sam-

ple taken from the initial populations and measuring their relative

growth rates. In [5] it was shown that the BS model with random mu-

tations qualitatively reproduces some of the experimental results on

relative bacterial fitness obtained in Lenski’s long-term experimen-

tal evolution project [13]. Using an extended multi-trait variant, [3]

extended the explanatory scope of the BS model to include experi-

mental findings about the interplay of adaptation, randomness and

history in bacterial evolution.

Informal definition of the BS model. The Bak–Sneppen model char-

acterizes each species in a biological system by a numerical fitness

value between zero and one, which represents its degree of adapted-

ness to its environment and changes as the species evolves. Further,

each species is assumed to directly interact with exactly two other

species, where it is left unspecified if such an interaction represents

competition for resources, predator-prey relations or something dif-

ferent entirely. The Bak–Sneppen model can therefore be visualized

as points on a circle, where each point stands for an ecological niche
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(or a species occupying that niche) and neighboring species interact

with each other.

As time progresses, the fitness landscape evolves in accordance

with the following rules, representing in an abstract way the princi-

ples of random mutation and natural selection: at each time step, the

least adapted species, i.e. the one with the smallest fitness parameter,

is removed from the system (becomes extinct) and its place is imme-

diately taken by a new species whose fitness is initially modeled as an

independent uniformly distributed random variable. In order to take

into account the effect of this change on the local environment, the

fitness parameters of the two species to either side of the least fit one

are also reset to random values. This can be thought of as those two

species themselves becoming extinct and superseded by new ones,

or as them undergoing mutations in response to their neighbor be-

coming extinct.

Previous mathematical results. Despite its apparently easy definition,

the BS model has withstood most attempts at mathematical analy-

sis in the past. Partial results have been obtained, however, in the

context of rank-driven processes [10,11] and mean-field approxima-

tions [4,7]. Early on it was conjectured based on simulations that the

steady-state fitness distribution at a fixed site converges, in the limit

of large populations, to a uniform distribution on the interval [fc, 1],

where fc is approximately equal to 0.667, but believed to be slightly

larger than 2/3.

There is only a small number of mathematically rigorous result

about the Bak–Sneppen model; in [15] it is shown that the steady-

state fitness at a fixed site is bounded away from one in expectation,

independent of the number of species in the system; A characteriza-

tion of the limiting marginal fitness distribution, conditional on a set

of critical thresholds, is given in [16] (see also [8,9]). In [18], the au-

thor proposes to compute the steady-state fitness distribution as the

fixed point of the one-step transition equation and uses this method

to describe the asymptotic fitness distribution for four species in

terms of a compact rational function. In the same paper it is shown

that one cannot find a similarly simple formula in the BS model with

five species, and that the fitness distribution of a randomly selected

species at steady-state in this case is not only not rational, but not

even a hypergeometric function.

Our contribution. In this paper, we revisit the Bak–Sneppen model

with five species. In Theorem 1, our main theorem, we establish a

representation of the steady-state fitness distribution for five species

in terms of the solution of an explicit differential equation with hy-

pergeometric coefficients. This steady-state distribution encodes in-

formation about the fitness attributes of species in a system that has

evolved for a long time. For instance, one can deduce from it how

fit, on average, a randomly selected species from the population is

expected to be; this is done in Corollary 1. Furthermore, since the

steady-state distribution contains information about the joint fitness

values of all species in the population, its knowledge allows to draw

biologically relevant conclusions about qualitative properties of the

system, such as the emergence of one or several dominant species, or

the fragmentation of the eco-system into areas of different prevailing

fitness. In our simple model, the symmetry of the initial configura-

tion is preserved and no such phenomenon occurs. It is an interesting

question whether in systems with a more complicated interaction be-

tween species, symmetry can be spontaneously broken.

We envisage that similar representations for the asymptotic fit-

ness distribution in larger systems may help pave the way towards

a resolution of the question of whether or not, in the limit of in-

finitely many species, the fitness is indeed asymptotically uniformly

distributed on the interval [fc, 1] with fc � 2/3. We speculate that

the techniques developed in this paper can be generalized to ana-

lyze larger systems with more than five species. It seems plausible to

expect that the asymptotic joint fitness distribution in such systems

can still be characterized as the solution to a certain linear differential

equation, even though the coefficients might no longer be hypergeo-

metric functions.

2. Formalization and main result

We adopt the following formalization of the Bak–Sneppen model

from [18]. Initially, all fitness parameters are independent uniformly

distributed and after k evolutionary steps the state of the system is

represented by the vector fk ∈ [0, 1]5, where the ith component refers

to the fitness of the ith species. The evolutionary dynamics of the sys-

tem can be expressed formally by the equation

P(fk+1 ∈ A|fk = x ) =
∫

A

Px(d
5ξ), x ∈ [0, 1]5, A ∈ B([0, 1]5),

where the one-step transition kernel Px encodes the dynamics of the

model and is given by

Px(d
5ξ) =

∏
μ/∈{ν−1,ν,ν+1}

δxμ(d ξμ)d 3(ξν−1, ξν, ξν+1), ν = argmin ξ .

Here, and in the following, all vector indices are taken modulo

five. The sequence f = (fk)k is a uniformly ergodic Markov chain

with absolutely continuous marginal distributions with densities gk :

[0, 1]5 → R+. This means that for any Borel set A ∈ B([0, 1]5),

P(fk ∈ A) =
∫

A

gk(x)d 5x,

and that the random vectors fk converge in distribution to a steady-

state limit f∞. Moreover, the k-step densities gk satisfy the recursion

gk+1(x) =
5∑

ν=1

∫
[0,1]3

1{ξ2<min (ξ1,ξ3,x]ν[)}gk

(
x]ν[ξ

)
d 3ξ , (1)

where the vectors x]ν[ ∈ [0, 1]2 and x]ν[ξ
∈ [0, 1]5 are obtained from

x by dropping the νth, and (ν ± 1)th components, or replacing these

components by the components of ξ, respectively. Uniform ergodicity

of the Markov chain f implies that the densities gk converge uniformly

to the density g = g∞ of the unique invariant distribution of f, which

we recognize as the steady-state fitness distribution. We also intro-

duce the notation

Fn,m(x)=2 F1

{
1

3

(
n + i

√
2
)
,

1

3

(
n − i

√
2
)
; m

3
; x

}
, n, m ∈ Z, x ∈ R,

where 2 F1 denotes the Gauss hypergeometric function

[1, Section 15.1] and i = √−1 is the imaginary unit. The follow-

ing is the main result of the paper.

Theorem 1. The limiting density g = limk→∞ gk is given by

g(x) = 1[0,1]5(x)
5∑

ν=1

q(min {xν, xν+1}, max {xν , xν+1}), (2)

where q(x, y) = G′(1 − x)B′
1
(1 − y) + B◦,0(x). Here,

G(x) = 3

2
F2,1{1/2}F1,2

{
x3/2

}
+ 9

8
xF4,5{1/2}F2,4

{
x3/2

}
, (3)

and the function B1 is the unique solution of the differential equation∑5
j=0 c j(y)B( j)

1
(y) = 0 with boundary conditions

B1(1) = 1/5, B′
1(1) = 0, B′′

1 (1) = −1/5, B(3)
1

(1) = 1,

B(4)
1

(1) = −18/5. (4)

The coefficients cj(y), j = 0, 1, . . . , 5, are hypergeometric functions

given by

c0(y) = 18y4

(y3 + 2)
2

[
y
(
y3 − 22

)
G′(y) +

(
5y3 − 14

)
G(y)

]
, (5a)

c1(y) = −yc0(y), (5b)
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