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a b s t r a c t

Mathematical models in population ecology often involve parameters that are empirically determined and

inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating

such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a

challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by

probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes

it possible to determine rigorous bounds on the probability that some specified outcome for a population is

achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results

can be obtained at a computational cost that is considerably less than that required by statistical sampling

methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus

on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a

new class of potentially important industrial chemicals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models are often the only resource available to pre-

dict the effects of anthropogenic influence on ecological systems.

Limited physical experiments can possibly isolate and estimate the

interactions between a subset of species in an ecosystem, or deter-

mine the effects of a change to the environment (e.g., a change in

some resource or the introduction of a new resource, predator, or

contaminant). However, it is difficult to replicate many such inter-

actions or changes with physical experiments.

It can also be challenging to develop and effectively use mathe-

matical models of ecosystems, particularly in the presence of uncer-

tainty. The importance of dealing with the many potential sources

of uncertainty in developing and using population ecology models

is well known [e.g., 1–4]. Our focus here is on those types of uncer-

tainty (e.g., measurement error, natural variation) that may manifest

themselves as uncertainties in model parameters. Given some quan-

titative description of the parameter uncertainty, such as an interval

or a probability distribution, the general goal of uncertainty analysis

is to quantify the effect of such uncertainty on the model outputs,

or, in other words, to “propagate” the parameter uncertainty to the

outputs. For relatively simple static or algebraic models, this might

be done directly, perhaps using interval arithmetic or appropriate
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convolutions of probability distributions. For more complex or dy-

namic models, this is widely done using various sampling methods

(e.g., Monte Carlo) in which model outputs are computed repeat-

edly at many different samples of the parameter values, with samples

taken based on a specified probability distribution, if available.

In the presence of multiple types of uncertainty, it may be ap-

propriate to describe the parameter uncertainty using probability

bounds [3,5,6]. In this case, probability distributions are not known

precisely but instead bounds on the cumulative probability distri-

butions are given, thus effectively combining the ideas of intervals

and probability distributions. For example, probability bounds may

be a useful treatment of uncertainty when both measurement error

(often represented by “error bars”, i.e., intervals) and natural variabil-

ity (often represented by probability distributions) are present. When

probability bounds are used, direct propagation of the uncertainty is

again possible for reasonably simple static or algebraic models, and

there is software available for this purpose [6]. For more complex or

dynamic models, sampling methods can again be used; however, this

is now a second-order (or two-dimensional) process [7], in which first

a sample of the probability distribution for the parameters is taken

from within their given probability bounds, and then this probabil-

ity distribution is used to sample the parameter values. Such a nested

sampling procedure can become quite expensive computationally.

We illustrate here a method for the direct propagation of un-

certainties represented by probability bounds through nonlinear,

continuous-time, dynamic models in population ecology. Uncertain-

ties represented by simple intervals or probability distributions can

also handled, as special cases, using this approach. No sampling is
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Fig. 1. Interpretation of a p-box PB(x). (a) The probability that x ≤ 2 is bounded by the interval [0.40, 0.60]. (b) The 40th percentile value of x is bounded by the interval [1.78, 2.00].

required, and computed bounds on outputs are mathematically and

computationally rigorous. This approach was originally developed [8]

for applications in chemical process reaction engineering.

This paper is organized as follows. In the next section, we will pro-

vide some brief background on the key mathematical tools used, in

particular intervals, and their extension to probability boxes, and Tay-

lor models. Then we will provide a concise mathematical statement

of the general problem to be solved, followed by a summary of the

solution methods used. We will then demonstrate these methods us-

ing three example systems, with focus on a model of an experimental

aquatic food web subject to the effects of chemical contamination.

2. Background

2.1. Interval analysis

One simple way of representing uncertainty in a model parame-

ter is to treat it as an interval. This is appropriate if upper and lower

bounds are known, but there is no information about a probability

distribution. Formally, we define a real interval X as the set of real

numbers between (and including) a specified lower bound (denoted

by X ) and upper bound (denoted by X). That is, X = [X, X] = {x ∈
� | X ≤ x ≤ X}. A real interval vector X = (X1, X2, . . . , Xn)T has n real

intervals as components and can be regarded as an n-dimensional

rectangle or box. Interval matrices are similarly defined. Arithmetic

on intervals is defined according to X op Y = {x op y | x ∈ X, y ∈ Y},
op ∈ {+,−, ×, ÷}. Division in the case of 0 ∈ Y is allowed only in ex-

tensions of interval arithmetic [9]. Interval versions of the elementary

functions can be similarly defined. Interval computations are imple-

mented with outward rounding (lower bound rounded down, upper

bound rounded up). Thus, interval computations can be used to ob-

tain rigorously guaranteed bounds on function ranges, and play a key

role in the verified (or validated) numerical solution of a variety of

problems in science and engineering [10].

For a real function f(x) of n variables, the interval extension F(X)

provides bounds on the range of f(x) for x ∈ X. That is, {f(x)|x ∈ X}

⊆ F(X). However, while these bounds are guaranteed, they are not

necessarily tight. If F(X) is computed using interval arithmetic (by re-

placing x with X in the expression for f(x)), and if any variable oc-

curs more than once in this expression, then the function range may

be overestimated due to the “dependency” problem. This occurs be-

cause, in interval arithmetic, separate occurrences of the same vari-

able are not recognized as dependent. Another potential source of

overestimation (lower bounds too low, upper bounds too high) in

the use of interval methods is the “wrapping” effect [11]. This oc-

curs when a multidimensional interval is used to enclose (wrap) a

set of results that is not an interval. If this type of overestimation is

propagated, say from step to step in an integration method for or-

dinary differential equations (ODEs), it can lead quickly to the loss

of a meaningful enclosure. Historically, the issues of wrapping and

dependency have resulted in interval methods acquiring a reputa-

tion for producing overly loose and conservative bounds. However,

current interval methods, including the use of techniques such as

Taylor models, as discussed below, can often yield rigorous bounds

with very little overestimation. Several good introductions to interval

analysis, as well as interval arithmetic and other aspects of comput-

ing with intervals, are available [9,10,12–15].

2.2. Probability boxes (P-boxes)

An interval gives an upper and lower bound only, and provides no

knowledge about the distribution of uncertainties. If some (but not

exact) knowledge about the distribution is available, then this can

be is captured by using “probability boxes” (p-boxes), which provide

interval-like bounds on the cumulative distribution function (CDF)

[6,8,16,17]. Intervals and exact CDFs represent special cases of the

more general concept of the p-box.

For some quantity (variable or parameter) x, we define the CDF

Fx(z) as giving the probability that x ≤ z. A p-box for x, denoted

PB(x) = (Lx, Rx), is the set of all such CDFs enclosed by two bound-

ing CDFs Lx(z) and Rx(z) with finite support. That is, PB(x) = (Lx, Rx) =
{Fx(z) | Lx(z) ≥ Fx(z) ≥ Rx(z)}. For a given value of z, the left bounding

function Lx(z) of the p-box gives the upper bound on the probability

that x ≤ z and the right bounding function Rx(z) gives the lower bound

on this probability. This is shown for an example p-box in Fig. 1(a),

which is marked to indicate that, for this p-box, the probability that

x ≤ 2 is bounded by the interval [0.4, 0.6]. Conversely, for a given value

of the cumulative probability, Lx(z) and Rx(z) provide lower and up-

per bounds on the values of x for which this probability is possible.

For the case of the p-box in Fig. 1(b), this shows that the 40th per-

centile value of x is bounded by the interval [1.78, 2]. The bounding

functions in Fig. 1 are (truncated) Gaussian CDFs. However, the p-box

encloses both Gaussian and non-Gaussian CDFs.

Williamson and Downs [5] have presented methods for rigorously

bounding the results of arithmetic (or other) operations on random

variables when only their bounding distributions are known. This can

be done without assuming any information about possible correla-

tion between the operands. It can also be done for the cases that the

operands are independent, or that they are the same, such as in a

polynomial or other expression with a repeated operand. In general,

these methods are implemented numerically, and use piecewise-

constant discretizations of the bounding distributions. For the dis-

cretization, the p-box bounds are enclosed using an ordered set of d

intervals, each representing a probability range of equal weight 1/d.

Subsequent operations are then done on these intervals using inter-

val arithmetic. A detailed example of an arithmetic operation on two

p-boxes is given by Enszer et al. [8], who also demonstrate how the

dependency and wrapping issues extend from interval operations to

p-box operations. Analogous procedures can be used to determine

probability bounds on the results of other functions (e.g., logarithm,

integral powers, polynomial, etc.) Obviously, a tighter enclosure of

a p-box can be obtained using a finer discretization. Unless noted
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