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The mathematical framework of the chemical master equation (CME) uses a Markov chain to model the bio-
chemical reactions that are taking place within a biological cell. Computing the transient probability distri-
bution of this Markov chain allows us to track the composition of molecules inside the cell over time, with
important practical applications in a number of areas such as molecular biology or medicine. However the
CME is typically difficult to solve, since the state space involved can be very large or even countably infinite.
We present a novel way of using the stochastic simulation algorithm (SSA) to reduce the size of the finite
state projection (FSP) method. Numerical experiments that demonstrate the effectiveness of the reduction

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Models of cellular processes promise great benefits in important
fields such as molecular biology or medicine. When molecules ex-
ist in large numbers, models can be formulated using concentrations.
And since concentrations are continuous quantities, this way of doing
so allows using reaction rate equations (RREs), which are determin-
istic, nonlinear ordinary differential equations. Within a cell, how-
ever, some key regulatory molecules exist only in small numbers, in
which case it becomes more appropriate to formulate the models in
a discrete and stochastic setting. The mathematical framework that
underpins this is a continuous-time, discrete-state, Markov process,
and computing its transient probability distribution amounts to solv-
ing the chemical master equation (CME).

While promising many insights, the CME is difficult to solve, es-
pecially for large models. Consequently, researchers often resort to
simulating trajectories, using most notably Gillespie’s stochastic sim-
ulation algorithm (SSA) [2] or its improved variants, e.g., [1].

We outline a novel solution technique here, namely an SSA-driven
reduction of the state space that builds on the principle that the CME
aims at computing a probability vector p = (py,.... pn)T €[0,1]",
with components that sum to one, Y1 ; p; = 1. A key consequence
of this is that if numerous nonnegative real numbers sum to one,
then some of these numbers are necessarily zero or small. That is, for
very large problems, n > 1, the probability sum condition implies that
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some of the components must necessarily be zero or negligible, and
precisely because the CME has such extremely high dimension, the
more of them there will be. As our paper will show, dropping those
negligible components allows us to reduce the size dramatically.

We build on the finite state projection (FSP) of Munsky and Kam-
mash [9] and the Krylov-FSP [8] that was an early improvement to the
basic FSP. We note that there have been other developments targeted
at special problems such as those with a clear separation of time-
scales [14], or those reducible to one-dimensional processes [15].
Applying the quasi steady state assumption when possible can also
reduce the state space in some cases [6,16]. Several other general
studies such as [5,12,13] have investigated ways to speed up the cal-
culations. But solving the CME of realistic models with many species
and many reactions remains a formidable challenge to all methods.
Our new SSA-based reduction drives the FSP in a fast, economical,
and adaptive way.

The organization of the paper is as follows. Section 2 motivates
this study. Section 3 gives some background on modeling biochemi-
cal reactions by way of the CME. Section 4 summarizes the basic FSP
method and introduces our proposed SSA-driven approach. Section 5
describes the original Kylov-FSP method and how to incorporate our
new reduction. Section 6 shows the performance of our method on
some examples. Section 7 finally gives some concluding remarks.

2. Challenge and motivation

What makes the CME so hard to deal with is because it is
exhaustive—it enumerates all the possible states that the cell can ever
have, resulting in a size that is extremely large and difficult to handle.
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In reality, however, at any given time, there could be several states
that are unlikely and that could be safely ignored in the calculations.
These could be past states that the cell already had and is unlikely to
have again, or they could be future states that are too far in the fu-
ture to be relevant at present. By ignoring those improbable states,
we can reduce the size to a tractable level. While this principle is
quite promising [6,9,12], it raises the challenging points that we dis-
cuss next.

First, states that may be improbable right now can become prob-
able the next instant because the makeup of the cell is continuously
changing as a result of the reactions that are taking place within it.
Hence the subset of probable states is changing over time, but the
merit of our approach hinges on the core principle that this subset
remains small compared to the set of all possible states that the cell
can ever have and that are encoded in the full blown CME. The key to
efficiency is therefore to only track this reduced subset and deliber-
ately ignore unlikey states, in a way that is adjusted dynamically over
time.

The second point is related to the first point in the following sense:
how then do we distinguish probable states from improbable ones?
If we do a good job in the selection, we speed up the calculations.
However, if we mistakenly exclude relevant states, we ultimately end
up with unreliable answers, or even worse, erroneous or meaning-
less answers that we may wrongly believe to be right. This is a seri-
ous concern that is not simple to resolve because a sorting strategy
may come at a significant overhead due to the fact that we deal with
extremely large models over possibly thousands of time steps.

Our research is bringing fresh ideas from advanced computing and
differential equations into the field of stochastic chemical kinetics.
We are investigating inexact (or relaxed) techniques with other novel
reduction techniques. What we present in this work is a fundamental
cornerstone that is shaping our investigations.

3. The chemical master equation

As mentioned earlier, when there are small numbers of some
molecular species, as is the case for many key regulatory elements
in biological systems, it is more appropriate to use a discrete and
stochastic framework to model such systems. The underlying Markov
chain is briefly described in this section, which also serves to outline
the terminology and notation.

Consider a biochemical system with N > 1 different chemical
species that are interacting via M > 1 chemical reactions. The state of
the system is a vectorx = (xq, ..., xy)! of nonnegative integers where
X; is the current population of the ith species. Transitions between
states occur when (and only when) a reaction occurs. Each reaction
1 < j < M entails a stoichiometric vector v; that represents the change
when the reaction occurs; if the system is in state x and reaction j oc-
curs, then the system transitions to state ¥ 4 v;. Each state x entails
M propensities o1 (X), ..., oy (x) that determine the relative chance
of each reaction occurring if the system is in state x. The propensi-
ties are defined by the requirement that, given X(t) = ¥, a;(x)dt is the
probability of reaction j occurring in the next infinitesimal time in-
terval [t, t + dt), where the dependence on time has now been made
explicit.

Let the probability of being in state x at time t be denoted by
P(x; t) and consider the way that this changes over time. With ap-
propriate assumptions, it can be shown, see for example Higham [4]
for a readable overview, that for each state x, the previous description
of the model implies that this probability satisfies the CME, which is
the following discrete, parabolic, partial differential equation:

M M
% =Y ojX—v)PE—-v;:t) —Px: 1) > aj(x).
j=1 j=1
It may be written in an equivalent matrix-vector form by enu-
merating all the states. In this case, if there are n possible states,

X1, ..., X, the CME takes the form of a system of linear ordinary dif-
ferential equations (ODEs)

{p/(t) =Ap(t). tel0.t]
p(0) = py.

where the probability vector p= (py,...,ps)T is such that each
component p; = P(x;,t) = Prob{x(t) = x;}, the probability of being
at state x; at time ¢, for i =1, ..., n. It is customary to equivalently
identify a state x; just by its index i in the enumeration. We shall use
both identifications interchangeably. The vector py = p(0) is an ini-
tial probability distribution and A is a sparse n-by-n matrix represent-
ing the infinitesimal generator of the Markov chain that underpins
the CME. For i # j, the entry a;; holds the propensity for the system to
transition to state i from state j, or O if unreachable. Thus the a;;, for
i # j, are nonnegative. And to be a valid infinitesimal generator, the
diagonal terms are defined as a;; = — 3_; a;;, which means that A has
zero column sum and so probability is conserved. The solution of (1)
at time t is

p(t) = exp (tA) po. (2)

where exp (tA) = > 2o % is the usual matrix exponential repre-
sented in Taylor series (among other equivalent definitions). Since
there is no particular structure common to all the models, calcula-

tions cannot rely on generic simplifications.

(1)

4. Model reduction
4.1. FSP method

With the CME prone to have a huge state space and in theory, even
a potentially countably infinite set of states, a crucial goal is how to
effectively reduce the state space in a meaningful way that still cap-
tures enough of the cell dynamics. The finite state projection (FSP)
algorithm of Munsky and Khammash [9] is one such model reduction
method that we summarize here since we build on it. The principle is
to truncate the system to a smaller subsystem that captures enough
information while remaining tractable. Let ] = {1, ..., k}, then the
matrix in (2) is replaced by A; where

A= (i‘l_'i) e R,
* *

i.e,, with k = |J| being the cardinality of ], A; is a k x k submatrix of
the true operator A. The states indexed by ] then form the finite state
projection. The FSP method takes

p(ty) ~ exp (t;A) p;(0). (3)

Note the subscript J that characterizes the truncation just described
and note that the initial distribution is truncated similarly. In fact,
more generally, A; need not simply be a principal submatrix. Rather,
assume that J is an arbitrary subset of {1, ..., n} and that for consis-
tency A; is defined with the same size as the matrix A = [q;;] using

aij lfl,] GJ
A —
(A {o ifig¢Jorje]
Similarly, p, is defined from p = (ps...., pa)T using
[ ifie)
(p))i = {0 otherwise.

The FSP approximation still takes the form (3). Obviously, all com-
putations are done in practice on the effectively truncated matrix,
justifying why the FSP is a reduction method. Conceptually, such a
truncation can be understood as an implicit reordering PTAP where
P is an appropriate permutation matrix that makes the effectively
truncated matrix a principal submatrix. Munsky and Khammash [9]
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