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a b s t r a c t

This paper deals with the state estimation for a schistosomiasis infection dynamical model described by

a continuous nonlinear system when only the infected human population is measured. The central idea is

studied following two major angles. On the one hand, when all the parameters of the model are supposed

to be well known, we construct a simple observer and a high-gain Luenberger observer based on a canonical

controller form and conceived for the nonlinear dynamics where it is implemented.

On the other hand, when the nonlinear uncertain continuous-time system is in a bounded-error context, we

introduce a method for designing a guaranteed interval observer. Numerical simulations are included in order

to test the behavior and the performance of the given observers.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Human schistosomiasis is a behavioral and occupational disease

associated with poor human hygiene, insanitary animal husbandry

and economic activities. Among human parasitic diseases, schistoso-

miasis ranks second behind malaria as far as the socio-economic and

public health importance in tropical and subtropical areas are con-

cerned. Urinary schistosomiasis, caused by the species Schistosoma

haematobium, is common in Africa and the Middle East. The main

clinical sign of schistosomiasis infection is haematuria itself caused

by the depositions of eggs by an adult female’s worms through the

bladder by urinary intermediary [1].

The most effective form of treatment for infected individuals is

the use of the drug praziquantel a drug that kills the worms with

high efficiency. Control programs often consist on mass chemother-

apy possibly supplemented by snail (intermediate host) control. Since

school-age children are the heaviest infected group that suffer the

most from morbidity and by that are major sources of infection for

the community, school targeted chemotherapy can be then an ade-

quate effective approach to control that morbidity [1,2].

Schistosomiasis have one of the most complex host-parasite pro-

cess to model mathematically because of the different steps of growth

of larval assumed by the parasite and the requirement of two host el-
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ements (definitive human host and intermediate snail hosts) during

their life cycle.

Current world-wide interest in the control of schistosomiasis has

focused attention upon the intermediate hosts of the causative par-

asite, since there is general agreement that the most promising

method of controlling the disease is to eliminate or greatly reduce

the numbers of these vector snails. It is necessary to obtain infor-

mation about snail populations, whether the information is used for

snail-control evaluation, for ecological research, or for the study of

transmission potential.

In epidemiology, mathematical models are very often used to de-

scribe the dynamic evolution of the diseases. Deterministic Ordinary

differential Equations (ODEs) are one of the major modeling tools and

are used in our case.

In this paper, we are interested in the estimation problem of the

unknown snails population state of a schistosomiasis model whose

dynamics are modeled by a continuous time system.

Symbolically, we can write a dynamical system as:{
Ẋ(t) = F(X(t)),
Y(t) = h(X(t)),

(1)

with X(t) ∈ R
n, Y(t) ∈ R

p, p < n.

If it is possible to have the value of the state at some time t0 then

it is possible to compute X(t) for all t ≥ t0 by integrating the differen-

tial equation with the initial condition X(t0). Unfortunately, it is not

often possible to measure the whole state at a given time and by the

same way to integrate the differential equation because one does not

know the initial condition. One can only have a partial information

on the state and this partial information is precisely given by Y(t) the
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output of the system. Therefore we shall show how to use this partial

information Y(t) together with the given model in order to have a reli-

able estimation of the unmeasurable state variables. A state observer

is usually employed, in order to accurately reconstruct the state vari-

ables of the dynamical system. In the case of linear systems, the ob-

server design theory developed by Luenberger [3], offers a complete

and comprehensive answer to the problem. In the field of nonlinear

systems, the nonlinear observer design problem is much more chal-

lenging and has received a considerable amount of attention in the

literature.

An observer for (1) is a dynamical system{
Ż(t) = F̂(Z(t),Y(t)),

X̂(t) = L(Z(t),Y(t))
(2)

whose task is state estimation. It is expected to provide a dynamical

estimate X̂(t) of the state X(t) of the original system. The output is in

general a function of the state variable, that is, Y(t) = h(X(t)).

One usually requires at least that |X̂(t) − X(t)| goes to zero as

t → ∞. When the convergence of X̂(t) towards X(t) is exponential,

the system (1) is an “exponential observer”. More precisely, system

(2) is an exponential observer for system (1) if there exists λ > 0 and

c0 ≥ 0 such that, for all t ≥ 0 and for all initial conditions (X(0), X̂(0)),
the corresponding solutions of (1) and (2) satisfy

|X̂(t) − X(t)| ≤ e−λ t(|X̂(0) − X(0)| + c0).

The best situation corresponds to the case where c0 = 0. In this situa-

tion a good estimate of the real unmeasured state is rapidly obtained.

One must notice that we do not need to care about the initial condi-

tion of the observer since the convergence of X̂(t) towards the real

state X(t) does not depend on this choice.

There are numerous means to deal with the synthesis of nonlinear

observers. The most general method to tackle it is to use a “high-gain

method observer ” when the functions of the variables are perfectly

known in the dynamical model. This means is much more general

than “the output injection model ” developed in [4–7], which is ap-

plied to a very special class of systems only.

If it happens that some functions of the variables are partially

known in the dynamical model but bounded with a priori known

bounds, we can define a bounded error observer giving X̂(t) with

|X̂(t) − X(t)| bounded by a “reasonable” positive real constant (de-

pending on the uncertainty), “reasonable” meaning that this constant

is small with respect to the measurement errors as developed in [8].

This paper shows out first a high-gain observer for a reduced non-

linear model of schistosomiasis as proposed by Allen [9]. This high-

gain observer method, has been initiated in [10–12]. However, the

convergence of this kind of observers is difficult to prove (because

of the global Lipshitz condition). So, we propose a simpler observer

whose convergence analysis is studied. This nonlinear observer de-

sign does not require Lipschitz extension of functions and change of

coordinates for the system contrary to the high-gain observer.

In the second part, we will present an interval observer design to

handle the already mentioned uncertainties of the model parameters.

The methodology of interval observers has already been studied us-

ing a theoretical framework [13,14], and interval observers have been

developed for particular models [15,16], and have been validated ex-

perimentally [14]. In these works the authors address conditions for

stability of the interval observer.

The construction of an observer requires some properties of ob-

servability and requires essentially the existence of globally defined

and globally Lipschitzian change of coordinates.

The paper is organized as follows: In Section 2 we present the

biological assumptions that guided the model’s structure and the

model’s equations. In Section 3 we perform a high-gain observer de-

sign. Section 4 will point out a simple observer design. Section 5 tack-

les the guaranteed interval observer construction. Finally Sections 6

and 7 will respectively be constituted of the different estimator sim-

ulations and the conclusion.

2. Model and assumptions

In this section, the model proposed is a modified version of Allen’s

model [9]. The main point in the model presented in Allen in a rel-

atively isolated community, based on the model presented in Allen

[9] is to take into account an additional mammalian host as well as

a competitor snails. The model assumes that hosts population and

infection rates are independent of environmental factors. The total-

ity of simplifying assumptions lead one to question the quantitative

predictions of the model. However, the qualitative features of the re-

sults are in themselves of considerable interest [9]. Here, we ignore

competitor snails population. Thus, the total human population size,

denoted by NH(t), is split into susceptible individuals (X1(t)) and in-

fected individuals (X2(t)) so that NH(t) = X1(t) + X2(t), and the to-

tal mammal population size, denoted by NM(t), is also subdivided

into susceptible mammals (X6(t)) and infected mammals (X7(t)) so

that NM(t) = X6(t) + X7(t). Whereas, the total snails population, de-

noted by NS(t), is subdivided into susceptible snail host (X3(t)), in-

fected snails which are not yet shedding cercariae (X4(t)) and infected

and shedding snail (X5(t)). Thus NS(t) = X3(t) + X4(t) + X5(t). We as-

sume that the total time interval considered, T, is not too large so

that the infection in the definitive hosts (e.g. human) does not result

death. Further, it is assumed that infected snails and infected mam-

mals do not recover from schistosomiasis as their life spans are short

in comparison to that for humans. For simplicity, assume that births

in each population group (human, snail and alternate host) were al-

lowed to enter only the uninfected populations. Another assumption

made is that the latent periods can be ignored in both definitive and

intermediate hosts. This means that we disregard the time period be-

tween the moment when a cercaria penetrates a definitive host and

the moment when the cercaria has grown to a sexually mature par-

asite. Other assumptions are that the recovery rate of infected inter-

mediate hosts is independent of the length of the infectious period,

and that the rate of output of cercariae from an infected intermedi-

ate host is constant throughout the period when it remains infected.

We furthermore assume that births and deaths were considered to be

proportionate to population size.

Thus, the differential equations which govern the disease are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1

dt
= −t15 X5 X1 + r12 X2,

dX2

dt
= t15 X5 X1 − r12 X2,

dX3

dt
= b3 (X3 + X4 + X5) − t32 X2 X3 − d3 X3 − t37 X3 X7,

dX4

dt
= t32 X2 X3 + t37 X3 X7 − d4 X4 − r54 X4,

dX5

dt
= r54 X4 − d5 X5,

dX6

dt
= b6(X6 + X7) − t65 X5 X6 − d6 X6,

dX7

dt
= t65 X5 X6 − d7X7.

(3)

where:

• t15 = transmission rate from infected snails to uninfected hu-

mans,
• t32 = transmission rate from infected humans to uninfected

snails,
• t37 = transmission rate from infected mammals to susceptible

snail,
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