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a b s t r a c t

In simple infection models, the susceptible proportion s∗ in endemic equilibrium is related to the basic re-

production number R0 by s∗ = 1/R0. We investigate the extent to which this relationship remains valid under

more realistic modelling assumptions. In particular, we relax the biologically implausible assumptions that

individuals’ lifetimes and infectious periods follow exponential distributions; allow a general recruitment

process; allow for multiple stages of infection; and consider extension to a multigroup model in which the

groups may represent, for instance, spatial heterogeneity, or the existence of super-spreaders. For a homoge-

neous population, we find that: (i) the susceptible proportion is s∗ = 1/Re
0, where Re

0 is a modified reproduc-

tion number, equal to R0 only in certain circumstances; (ii) the proportions of the population in each stage of

infection are proportional to the expected time spent by an infected individual in that stage before recovery

or death. We demonstrate robustness of the formula s∗ = 1/R0 for many human infections by noting condi-

tions under which Re
0 is approximately equal to R0, while pointing out other circumstances under which this

approximation fails. For heterogeneous populations, the formula s∗ = 1/R0 does not hold in general, but we

are able to exhibit symmetry conditions under which it is valid.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A key question in infectious disease modelling is the extent to

which results derived from highly simplified models remain valid un-

der more realistic modelling assumptions. With this in mind, the au-

thors in [23,24] recently investigated the well-known epidemic final

size equation of Kermack and McKendrick [17], with a view to under-

standing the extent to which the original equation remains valid un-

der a range of modelling assumptions. In fact, the original derivation

of [17] is already rather general, in that the expected infectivity of an

individual is allowed to be an arbitrary function of time since infec-

tion, and in particular an individual’s infectious period may be drawn

from a general distribution. An illuminating discussion of the work

of [17] appears in [5]. Sections 9 and 10 of [23] extend the model to

allow for population heterogeneity; the final size equation obtained

is a special case of Eq. (7) of [27]. Ma and Earn [23] discuss condi-

tions under which the form of the original Kermack–McKendrick [17]

equation is retained, and note that in the presence of heterogeneities,

appropriate modification of the equation is generally required. Fur-

ther recent discussion of the form of the final size equation, with par-

ticular reference to network models, appears in [24].

In the current work, we focus rather upon the prevalence

level of an infection in long-term endemic equilibrium. We shall
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be concerned throughout with deterministic models, which is to

say that we study mean behaviour in a large, well-mixed pop-

ulation. Nevertheless, we find it useful to present individual-

based stochastic formulations of our models, since this aids

intuitive understanding and leads to more transparent derivation of

results.

The simplest model for endemic infection is the susceptible–

infective–susceptible (SIS) model of [32], the deterministic version

of which is represented by the system of differential equations

ds

dt
= −βsi + γ i,

di

dt
= βsi − γ i,

where s(t) and i(t) represent the proportions of individuals who are

susceptible or infective, respectively, at time t, with s(t) + i(t) = 1 for

all t ≥ 0. The constants β > 0 and γ > 0 are known as the infection rate

parameter and recovery rate parameter, respectively. The basic repro-

duction number (the expected number of secondary cases caused by

a typical primary case in an otherwise susceptible population) is here

given by R0 = β/γ . For R0 ≤ 1 the only feasible equilibrium point is

the disease-free equilibrium (s, i) = (1, 0), whilst for R0 > 1 there is

also an endemic equilibrium point (s∗, i∗) = (1/R0, 1 − (1/R0)).

Clearly the above SIS model is greatly over-simplified. In partic-

ular, for any model purporting to describe long-term behaviour, it

seems hard to justify the neglect of demographic processes of birth,

migration and death. A more plausible model is the susceptible–
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infective–removed (SIR) model with demography ([26] and refer-

ences therein). Individuals are recruited (by birth or immigration)

into the susceptible category at constant rate μ > 0 and die at per-

capita rate μ, and following infection are assumed to become perma-

nently immune. The deterministic version of the model is

ds

dt
= μ − βsi − μs, (1)

di

dt
= βsi − γ i − μi, (2)

dr

dt
= γ i − μr, (3)

where s(t), i(t) and r(t) represent scaled numbers of susceptible, in-

fective and immune (‘removed’) individuals, respectively. That is,

these variables give the numbers of individuals in each category di-

vided by some overall constant scaling factor indicative of popula-

tion size. Writing p(t) = s(t) + i(t) + r(t), then summing Eqs. (1)–

(3) gives dp/dt = μ(1 − p) so that p(t) → 1 as t → ∞. Since we are

interested in populations in equilibrium we will take p(0) = 1, and

then p(t) = 1 for all t so that s, i, r may be interpreted as propor-

tions of the population. For this model, R0 = β/(γ + μ), and we find

that for R0 ≤ 1 the only feasible equilibrium point is the disease-

free equilibrium (s, i, r) = (1, 0, 0), whilst for R0 > 1 there is also an

endemic equilibrium point (s∗, i∗, r∗) = (1/R0, (1 − (1/R0))μ/(γ +
μ), (1 − (1/R0))γ /(γ + μ)).

From these two very simple models, we immediately see some

common features emerging. For R0 ≤ 1, the only equilibrium point is

the disease-free equilibrium. For R0 > 1, in addition to the disease-

free equilibrium there exists a unique endemic equilibrium point

with susceptible proportion s∗ = 1/R0. Our aim is to investigate the

extent to which observations such as these remain valid for more so-

phisticated and realistic models. It is worth noting that we shall not

be concerned with the dynamics of the infection process, but only

with the existence, uniqueness, and form of the endemic equilib-

rium point. In particular we do not consider stability of equilibria, nor

whether the infection process displays oscillatory behaviour. These

are of course crucial properties, but the objective here is to study the

simplest aspects in quite a general context. We discuss issues of sta-

bility briefly in Section 4.

There are many aspects of the two models presented thus far that

are clearly gross simplifications of biological reality. Firstly, the ordi-

nary differential equation formulations imply that individuals’ life-

times and infectious periods are exponentially distributed. These are

in general not biologically plausible assumptions. In fact, the early

work of Kermack and McKendrick on endemicity [18,19] already al-

lowed an individual’s expected infectivity to be a general function of

time since infection, so that in particular, infectious periods need not

be exponentially distributed. In terms of individuals’ lifetimes, the

treatment in [18,19] is somewhat less satisfactory. In [18] there is no

death except due to infection, whereas in [19] natural deaths occur at

constant per-capita rates, so that an individual who never becomes

infected will live for an exponentially distributed time. More recent

work that does not assume exponentially distributed lifetimes and in-

fectious periods has generally fallen into two categories. Firstly, some

authors follow the lead of [19] in allowing for a realistic infectious

period distribution while assuming that lifetimes are exponentially

distributed, for instance [10,12,16]. This assumption is clearly unre-

alistic, but can greatly simplify the analysis. Alternatively, so-called

‘age-structured’ models ([9,14,31] and Chapter 22 of [30]) allow for a

realistic lifetime distribution, but often not a realistic infectious pe-

riod distribution. In such models the rate at which individuals re-

cover from infection is typically allowed to depend upon the indi-

vidual’s age, but not upon the time since infection. This makes the

model somewhat difficult to interpret, since the distribution of an in-

dividual’s infectious period is not straightforward to extract from this

framework. For instance, for many infections a reasonable simplify-

ing assumption is that the infectious period is a constant. This means

that the rate of recovery depends in the most extreme way upon time

since infection, and there is no way to even approximate this within

such an age-structured model. Age-structured models in which the

recovery rate is allowed to depend upon both age and time since in-

fection are described and studied in [8,13,15,16]. Closer to the spirit of

the current work is the recent paper [1], in which the authors study

a model based upon that of [18,19], in that an individual’s expected

infectivity is allowed to be a general function of time since infection,

but allowing a general lifetime distribution.

Rather than follow [1,18,19] in modelling infectivity as a contin-

uously varying function, we prefer to treat the infection process as

consisting of a sequence of distinct stages of infection. This formula-

tion in terms of multiple stages may be regarded as a special form of

time-varying infectivity function; however, we prefer the formulation

of stages, which has become standard in modern infection modelling,

for the following reasons. Many infections exhibit clinically meaning-

ful stages, such as a latent period or post-infectious period of tempo-

rary immunity; and some infections (e.g. HIV) are commonly mod-

elled as comprising multiple stages of infection. Further, in fitting to

data it seems reasonable to estimate a small number of infectivity

parameters, whereas to estimate an continuously varying infectivity

function would present a much greater challenge.

Another simplifying assumption often made is that recruitment

to the population occurs at constant rate μ. This has the desirable

effect that the population size stabilises at p(t) = 1, providing a sim-

ple way to study an infection spreading in a stable population. How-

ever, other recruitment rate functions may be more biologically plau-

sible, such as a combination of immigration and linear birth giving

rate μ + αp(t) for some μ, α > 0 [18,19], or logistic recruitment at

rate μ(1 − (p(t)/K)) for some μ, K > 0 [20]. We allow quite a general

recruitment rate function.

Finally, a variety of heterogeneities may be present in the popu-

lation; for instance, heterogeneous susceptibility, heterogeneous in-

fectivity, or heterogeneity of mixing. We will allow for heterogeneity

by stratifying the population into a finite number of groups. Related

previous work includes [11], Chapter 23 of [30] and Sections 8.5 and

8.6 of [28]; in each of these references, exponentially distributed life-

times were assumed.

In summary, we aim to study a model for infection which incor-

porates a general recruitment rate function; non-exponentially dis-

tributed lifetimes and infectious periods; multiple stages of infection;

and heterogeneous population structure. In contrast to previous au-

thors, we focus specifically upon the form of the endemic equilibrium

point, and the extent to which this form is dependent upon common

simplifying assumptions.

2. Endemic infection in a homogeneous population

Consider a population which at time t consists of P(t) individu-

als. Individuals are recruited into the susceptible population accord-

ing to an inhomogeneous Poisson process of rate �(P(t)), where �(·)
is some non-negative function. Each individual lives for a time dis-

tributed as a non-negative random variable L before being removed

from the population (e.g. by death), and we assume E[L] < ∞. We

will assume no disease-related mortality (although see discussion

in Section 4 below), and so total population size P(t) can be anal-

ysed separately from the infection process. Denote by P∗ the expected

equilibrium population level (or quasi-equilibrium level in the case

�(0) = 0), and consider the large-population limit in which the pro-

cess p(t) = P(t)/P∗ may be treated as deterministic. We have

p(t) = 1

P∗

∫ t

−∞
�(p(u)P∗) Pr (L > t − u) du

= 1

P∗

∫ ∞

0

�(p(t − v)P∗) Pr (L > v) dv.
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