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a b s t r a c t

Stage-structured population models are commonly used to understand fish population dynamics and addi-

tionally for stock assessment. Unfortunately, there is little theory on the optimal harvest of stage-structured

populations, especially in the presence of stochastic fluctuations. In this paper, we find closed form optimal

equilibrium escapement policies for a three-dimensional, discrete-time, stage-structured population model

with linear growth, post-harvest nonlinear recruitment, and stage-specific pricing and extend the analytic

results to structured populations with environmental stochasticity. When only fishing reproductive adults,

stochasticity does not affect optimal escapement policies. However, when harvesting immature fish, the

addition of stochasticity can increase or decrease optimal escapement depending on the second and third

derivative of the recruitment function. For logistic recruitment, stochasticity reduces optimal immature es-

capement by a multiplicative factor of one over one plus the variance of the environmental noise. Using hard

clam, Mercenaria mercenaria, as an example and assuming Beverton–Holt recruitment, we show that opti-

mal fishing of hard clam targets the immature stage class exclusively and that environmental stochasticity

increases optimal escapement for low discount rates and decreases optimal escapement for high discount

rates.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fisheries biologists, managers and economists widely recognize

that traditional one-dimensional bioeconomic models are too simple

for developing management guidelines for the majority of real-life

fisheries [1], as policies derived from such models can drastically re-

duce profits and stock sizes when naively applied to age-structured

populations [2]. While determining optimal age-specific harvest poli-

cies is a classic problem in bioeconomics [3–8], and an active area

of both theoretical and applied research [9–16], the effect of stage

structure and environmental stochasticity on optimal fisheries man-

agement is poorly understood.

Stage-structured models are often used to understand fish pop-

ulation dynamics and perform stock assessment [17,18]. It is usu-

ally more convenient for managers to obtain data on fish size or life

stage rather than age. Techniques for aging organisms can be expen-

sive and time consuming and in extreme cases logistically infeasible

[19]. In addition, fish prices are often based on discrete size classes

or life stages [20,21]. While developing optimal harvest rules for size

and stage-structured populations can potentially improve fisheries

∗ Corresponding author: Tel.: 530-574-1490.

E-mail address: mhh88@cornell.edu, matthematical@gmail.com (M.H. Holden).

management, it is more challenging to solve for optimal strategies in

this framework due to the lack of sparsity in the equations for stock

dynamics.

Past studies have simplified the problem by limiting transitions

between stage classes [22,23] or using continuous time models, in-

cluding two-dimensional ordinary differential equations (e.g. [24])

and partial differential equations [25,26]. However, fisheries biolo-

gists usually use discrete-time models for stock assessment [27] and

variability among individuals within a population can lead to a wide

range of stage transitions, previously unexplored with respect to op-

timization.

Tahvonen’s model [23] is the most similar to our deterministic

setup, but differs in a few key ways. We assume that harvest occurs

prior to growth and recruitment, as is usually the case for migrating

fish populations such as eel and salmon [28,29] and that individuals

can skip stages. However, the biggest difference between our two ap-

proaches is that we consider the addition of environmental stochas-

ticity.

While the effect of environmental stochasticity on optimal harvest

has been widely studied for one-dimensional bioeconomic models

(e.g. [30]), little is known about how stochasticity affects optimal har-

vest in structured populations. Of the few studies that exist, stochas-

ticity is typically only included in the form of random recruitment,
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and usually independent of spawning biomass [12,22]. In addition,

solutions heavily rely on numerical simulation and error-bound ap-

proximation [22,31].

In this paper, to our knowledge, we provide the first analytic opti-

mal stationary escapement solution for a demographically structured

population model with endogenous, nonlinear recruitment and envi-

ronmental stochasticity affecting all classes. We find that with the

addition of environmental stochasticity, the optimal escapement of

reproductive adults remains unchanged from the deterministic case,

if harvest occurs prior to recruitment. However, in the case of imma-

ture harvest, fishing should either be more aggressive or conserva-

tive than the deterministic case depending on the second and third

derivatives of the recruitment function. For example, if the recruit-

ment function is logistic, escapement should decrease by a factor of

one over one plus the variance of the environmental noise. We use

historical data from New York state’s hard clam fishery to provide a

concrete example of our theoretical results.

2. The deterministic model

Consider a harvested stage-structured fish population, where

events occur in the following order: (1) census (2) harvest, (3) repro-

duction, and (4) natural mortality and growth. That is,

B1,t+1 = R(B3,t − ht) + a11B1,t (1)

B2,t+1 = a21B1,t + a22(B2,t − ηt) (2)

B3,t+1 = a31B1,t + a32(B2,t − ηt) + a33(B3,t − ht), (3)

where B1, t, B2, t, and B3, t are the biomass of juvenile (stage 1), im-

mature (stage 2) and adult (stage 3) fish at time t, respectively. The

juvenile stage consists of fish too small to reproduce or catch. The im-

mature stage consists of all fish large enough to catch, but still cannot

reproduce. At time t, ht and ηt units of biomass are harvested from the

adult and immature fish population and we define σt ≡ B3,t − ht and

st ≡ B2,t − ηt as the corresponding amount of adult and immature

biomass that escape harvest. The remaining fish survive and grow,

where aij is the per unit biomass contribution, from the biomass that

escaped harvest in stage j, at time t, to the biomass in stage i, at time

t + 1.

We assume, 0 ≤ aij ≤ mi/mj, for all i > j, where mi is the average

mass of a stage i individual and that aij < 1 for all i = j. This means

that the population’s biomass can only increase through reproduction

and transitioning between different stages. If aii were greater than

one for some i, then, in the absence of harvest, an initial amount of

biomass in the ith stage would grow to infinity, even if there was no

reproduction.

Adults that escape harvest, reproduce, generating offspring with

total biomass described by a bounded, positive, smooth, concave,

density-dependent recruitment function R(σ t), where σ t is the

spawning biomass at time t and R(0) = 0. We can write the model

in matrix notation as

�Bt+1 = A(�Bt −�ht) + �Rt , (4)

where

�Bt =
(

B1,t

B2,t

B3,t

)
, A =

(
a11 0 0
a21 a22 0
a31 a32 a33

)
,

�h =
(

0
ηt

ht

)
, �Rt =

(
R(B3,t − ht)

0
0

)
.

B1, t is bounded for all time, because R is bounded and a11 < 1. If fol-

lows that B2, t and B3, t are bounded since aij < 1 for i = j.

Note, the model unconventionally tracks biomass rather than pop-

ulation abundance. In classic stage-structured models of abundance,

aij is the probability of an individual surviving and transitioning from

stage j to stage i. However, in our model, aij is a composite parameter

which additionally includes growth. Because of our assumptions on R

and aij, a simple rescaling, from biomass to abundance, of any admis-

sible parameterization of (4) yields a valid parameterization of the

classic stage-structured model presented in [32, Chs. 3, 4 and 16]. For

example, if âi j is an entry in the classic transition matrix model, then

âi j = ai jm j/mi, where mi is the average mass of a stage i individual.

We wish to maximize total discounted revenue, where revenue is

a linear function of harvest,

max
ht ,ηt

{
∞∑

t=0

ρt(p3ht + p2ηt)

}
, (5)

with p2 and p3, the price per unit biomass of immature and adult fish,

respectively, and ρ = 1/(1 + δ), the discrete discount factor, with dis-

count rate δ ≥ 0. Harvest is also subject to the constraints 0 ≤ ht ≤ B3, t

and 0 ≤ ηt ≤ B2, t.

3. Analysis of the deterministic model

3.1. Optimal equilibrium escapement

We use the Karush–Kuhn–Tucker theorem (p. 61 of [1]) to solve for

the equilibrium optimal harvest policy. The Lagrangian for the prob-

lem is

L =
∞∑

t=0

ρt{p3ht + p2ηt + ρλ1,t+1[R(B3,t − ht) + a11B1,t − B1,t+1]

+ρλ2,t+1[a21B1,t + a22(B2,t − ηt) − B2,t+1]

+ρλ3,t+1[a31B1,t + a32(B2,t − ηt) + a33(B3,t − ht) − B3,t+1]

+μ1,t ht + μ2,t [B3,t − ht ] + μ3,tηt + μ4,t [B2,t − ηt ]}
(6)

where ρλi,t+1 is the current value shadow price for Bi, t, the money

someone would pay for a small additional amount of biomass in the

ith stage at time t + 1 and μi, t are the multipliers for the inequal-

ity constraints on harvest. The Karush–Kuhn–Tucker necessary con-

ditions for and optimal solution are

ρa11λ1,t+1 + ρa21λ2,t+1 + ρa31λ3,t+1 − λ1,t = 0, (7)

ρa22λ2,t+1 + ρa32λ3,t+1 − λ2,t + μ4,t = 0, (8)

ρa33λ3,t+1 + ρR′(B3,t − ht)λ1,t+1 − λ3,t + μ2,t = 0, (9)

p2 − ρa22λ2,t+1 − ρa32λ3,t+1 + μ3,t − μ4,t = 0, (10)

p3 − ρR′(B3,t − ht)λ1,t+1 − ρa33λ3,t+1 + μ1,t − μ2,t = 0, (11)

μ1,t ht = 0 and μ2,t [B3,t − ht ] = 0, (12)

μ3,tηt = 0 and μ4,t [B2,t − ηt ] = 0, (13)

and μi,t ≥ 0 for all i ∈ {1, 2, 3, 4}. (14)

At steady state, the above system can be solved analytically, yield-

ing optimal equilibrium escapement rules for immature and adult

biomass, which we define as s∗ and σ ∗, respectively. We use the

star superscript (∗) and the omission of the time subscript to denote

steady state values for each variable under the optimal equilibrium
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