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ABSTRACT

Stage-structured population models are commonly used to understand fish population dynamics and addi-
tionally for stock assessment. Unfortunately, there is little theory on the optimal harvest of stage-structured
populations, especially in the presence of stochastic fluctuations. In this paper, we find closed form optimal
equilibrium escapement policies for a three-dimensional, discrete-time, stage-structured population model
with linear growth, post-harvest nonlinear recruitment, and stage-specific pricing and extend the analytic
results to structured populations with environmental stochasticity. When only fishing reproductive adults,
stochasticity does not affect optimal escapement policies. However, when harvesting immature fish, the
addition of stochasticity can increase or decrease optimal escapement depending on the second and third
derivative of the recruitment function. For logistic recruitment, stochasticity reduces optimal immature es-
capement by a multiplicative factor of one over one plus the variance of the environmental noise. Using hard
clam, Mercenaria mercenaria, as an example and assuming Beverton-Holt recruitment, we show that opti-
mal fishing of hard clam targets the immature stage class exclusively and that environmental stochasticity
increases optimal escapement for low discount rates and decreases optimal escapement for high discount

rates.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fisheries biologists, managers and economists widely recognize
that traditional one-dimensional bioeconomic models are too simple
for developing management guidelines for the majority of real-life
fisheries [1], as policies derived from such models can drastically re-
duce profits and stock sizes when naively applied to age-structured
populations [2]. While determining optimal age-specific harvest poli-
cies is a classic problem in bioeconomics [3-8], and an active area
of both theoretical and applied research [9-16], the effect of stage
structure and environmental stochasticity on optimal fisheries man-
agement is poorly understood.

Stage-structured models are often used to understand fish pop-
ulation dynamics and perform stock assessment [17,18]. It is usu-
ally more convenient for managers to obtain data on fish size or life
stage rather than age. Techniques for aging organisms can be expen-
sive and time consuming and in extreme cases logistically infeasible
[19]. In addition, fish prices are often based on discrete size classes
or life stages [20,21]. While developing optimal harvest rules for size
and stage-structured populations can potentially improve fisheries
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management, it is more challenging to solve for optimal strategies in
this framework due to the lack of sparsity in the equations for stock
dynamics.

Past studies have simplified the problem by limiting transitions
between stage classes [22,23] or using continuous time models, in-
cluding two-dimensional ordinary differential equations (e.g. [24])
and partial differential equations [25,26]. However, fisheries biolo-
gists usually use discrete-time models for stock assessment [27] and
variability among individuals within a population can lead to a wide
range of stage transitions, previously unexplored with respect to op-
timization.

Tahvonen’s model [23] is the most similar to our deterministic
setup, but differs in a few key ways. We assume that harvest occurs
prior to growth and recruitment, as is usually the case for migrating
fish populations such as eel and salmon [28,29] and that individuals
can skip stages. However, the biggest difference between our two ap-
proaches is that we consider the addition of environmental stochas-
ticity.

While the effect of environmental stochasticity on optimal harvest
has been widely studied for one-dimensional bioeconomic models
(e.g.[30]), little is known about how stochasticity affects optimal har-
vest in structured populations. Of the few studies that exist, stochas-
ticity is typically only included in the form of random recruitment,
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and usually independent of spawning biomass [12,22]. In addition,
solutions heavily rely on numerical simulation and error-bound ap-
proximation [22,31].

In this paper, to our knowledge, we provide the first analytic opti-
mal stationary escapement solution for a demographically structured
population model with endogenous, nonlinear recruitment and envi-
ronmental stochasticity affecting all classes. We find that with the
addition of environmental stochasticity, the optimal escapement of
reproductive adults remains unchanged from the deterministic case,
if harvest occurs prior to recruitment. However, in the case of imma-
ture harvest, fishing should either be more aggressive or conserva-
tive than the deterministic case depending on the second and third
derivatives of the recruitment function. For example, if the recruit-
ment function is logistic, escapement should decrease by a factor of
one over one plus the variance of the environmental noise. We use
historical data from New York state’s hard clam fishery to provide a
concrete example of our theoretical results.

2. The deterministic model
Consider a harvested stage-structured fish population, where

events occur in the following order: (1) census (2) harvest, (3) repro-
duction, and (4) natural mortality and growth. That is,

By 41 =R(B3; — ht) + auBi; (1)
By i1 =By + axn(Byy — nr) (2)
B3y1 = a31By¢ + asp(Bye — ) + as3 (B3 — he), (3)

where By ¢, By, and Bs ; are the biomass of juvenile (stage 1), im-
mature (stage 2) and adult (stage 3) fish at time t, respectively. The
juvenile stage consists of fish too small to reproduce or catch. The im-
mature stage consists of all fish large enough to catch, but still cannot
reproduce. At time t, h; and 7; units of biomass are harvested from the
adult and immature fish population and we define oy = B3 ; — h¢ and
St = By — 1 as the corresponding amount of adult and immature
biomass that escape harvest. The remaining fish survive and grow,
where q; is the per unit biomass contribution, from the biomass that
escaped harvest in stage j, at time t, to the biomass in stage i, at time
t+1.

We assume, 0 < a;; < m;/my, for all i > j, where m; is the average
mass of a stage i individual and that a;; < 1 for all i = j. This means
that the population’s biomass can only increase through reproduction
and transitioning between different stages. If a; were greater than
one for some i, then, in the absence of harvest, an initial amount of
biomass in the ith stage would grow to infinity, even if there was no
reproduction.

Adults that escape harvest, reproduce, generating offspring with
total biomass described by a bounded, positive, smooth, concave,
density-dependent recruitment function R(o:), where o is the
spawning biomass at time t and R(0) = 0. We can write the model
in matrix notation as

B.1 =A(B — hy) +R., (4)
where
By ag 0 0
Be=|By ). A=[an axn 0|,
B3, az; 04z a3
= 0\ R(B3 — hy)
h={n) R = 0
he 0

B ¢ is bounded for all time, because R is bounded and a;; < 1. If fol-
lows that B  and Bs ; are bounded since a;; < 1 fori = j.

Note, the model unconventionally tracks biomass rather than pop-
ulation abundance. In classic stage-structured models of abundance,
aj; is the probability of an individual surviving and transitioning from
stage j to stage i. However, in our model, a;; is a composite parameter
which additionally includes growth. Because of our assumptions on R
and a;;, a simple rescaling, from biomass to abundance, of any admis-
sible parameterization of (4) yields a valid parameterization of the
classic stage-structured model presented in [32, Chs. 3, 4 and 16]. For
example, if ;; is an entry in the classic transition matrix model, then
d;j = a;mj/m;, where m; is the average mass of a stage i individual.

We wish to maximize total discounted revenue, where revenue is
a linear function of harvest,

oo

max > p'(pshe + pame) ¢ (5)
G

with p, and ps, the price per unit biomass of immature and adult fish,
respectively, and p = 1/(1 + 8), the discrete discount factor, with dis-
countrate § > 0. Harvest is also subject to the constraints 0 < h <Bs ¢

and0 <7 <By .

3. Analysis of the deterministic model
3.1. Optimal equilibrium escapement

We use the Karush-Kuhn-Tucker theorem (p. 61 of [ 1]) to solve for
the equilibrium optimal harvest policy. The Lagrangian for the prob-
lem is

2 =" p'{pshe + P20t + PA1.0:1[R(Bs — he) + @B — By i1l
t=0
+0A2.c41[a21B1¢ + a2 (Bae — 1) — Baei]
+0A3e410a31B1c 4+ aza(Bae — Me) + as3 (B3¢ — he) — B3 1]
+1.che + pae[Bse = he] + w3 eme + pac[Bae — nel}

(6)
where pA;; 4 is the current value shadow price for B; ;, the money
someone would pay for a small additional amount of biomass in the
ith stage at time t + 1 and w; . are the multipliers for the inequal-
ity constraints on harvest. The Karush-Kuhn-Tucker necessary con-
ditions for and optimal solution are

Pan A1+ PAnA2 11 + PA31A3 0401 — A1 =0, (7)
P2z e11 + Pa3aAz et — Ao + ar =0, (8)
Pa33A3 41 + PR (Bsr — he) A g1 — Az + (o =0, 9)
P2 — PA2A2 41 — PA32A3 41 + U3 — Mhar =0, (10)
p3 — PR (B3¢ — h)Aier1 — pAssAsepr + i — Hae =0, (11)
M1che =0and o [Bsr — he] =0, (12)
Msene = 0and pac[Bar — el =0, (13)
and w;, > Oforallie {1,2,3,4}. (14)

At steady state, the above system can be solved analytically, yield-
ing optimal equilibrium escapement rules for immature and adult
biomass, which we define as s* and o*, respectively. We use the
star superscript (*) and the omission of the time subscript to denote
steady state values for each variable under the optimal equilibrium
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