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a b s t r a c t

The multiple infection of cells with several copies of a given virus has been demonstrated in experimental

systems, and has been subject to previous mathematical modeling approaches. Such models, especially those

based on ordinary differential equations, can be characterized by difficulties and pitfalls. One such difficulty

arises from what we refer to as multiple infection cascades. That is, such models subdivide the infected cell

population into sub-populations that are carry i viruses, and each sub-population can in principle always

be further infected to contain i + 1 viruses. In order to study the model with numerical simulations, the

infection cascade needs to be cut artificially, and this can influence the results. This is shown here in the

context of the simplest setting that involves a single, homogeneous virus population. If the viral replication

rate is sufficiently fast, then most infected cells will accumulate in the last member of the infection cascade,

leading to incorrect numerical results. This can be observed even with relatively long infection cascades,

and in this case computational costs associated with a sufficiently long infection cascade can render this

approach impractical. We subsequently examine a more complex scenario where two virus types/strains

with different fitness are allowed to compete. Again, we find that the length of the infection cascade can

have a crucial influence on the results. Competitive exclusion can be observed for shorter infection cascades,

while coexistence can be observed for longer infection cascades. More subtly, the length of the infection

cascade can influence the equilibrium level of the populations in numerical simulations. Studying the model

in a parameter regime where an increase in the infection cascade length does not influence the results, we

examine the effect of multiple infection on the outcome of competition. We find that multiple infection can

promote coexistence of virus types if there is a degree of intracellular niche separation. If this is not the

case, the only outcome is competitive exclusion, similar to equivalent models that do not take into account

multiple infection of cells. We further find that multiple infection has a reduced ability to allow coexistence if

virus spread is spatially restricted compared to a well-mixed system. These results provide important insights

when analyzing and interpreting multiple infection models.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Investigating the dynamics of virus spread through target cell

populations has produced a better understanding of the principles un-

derlying virus dynamics and evolution, and has provided insights into

in vivo processes that contribute to the development of disease from a

variety of human pathogens, such as human immunodeficiency virus

(HIV), hepatitis B and C viruses (HBV and HCV). Mathematical models

have played an important role in this respect [1–3]. A relatively

underexplored area in virus dynamics is the multiple infection of

cells, i.e. the simultaneous infection of a cell with more than one

copy of a virus. This can occur in different infections. For example,

adenoviruses are thought to infect cells with several viral copies,

and interesting dynamics have been observed that appear related
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to multiple infection and that warrant further investigation with

mathematical models [4]. Some of the better documented data come

from human immunodeficiency virus (HIV). A collection of in vitro

and ex vivo studies clearly showed that more than one virus can enter

the same cell [5–8]. For in vivo scenarios, patient data have been

reported that showed an average of 3–4 proviruses per infected cell in

the spleen [9]. Other studies, however, argued that the great majority

of infected cells in HIV-infected patients in the blood and tissues are

singly infected [10,11]. This discrepancy might be due to the particular

T cell subsets examined in the respective studies, although the reason

is not understood. The occurrence of viral recombination in vivo,

however, further indicates an important role of multiple infection,

since recombination would otherwise not be possible [7,9,12].

Virus dynamics in the presence of multiple infection has been

examined mathematically in a few studies. Basic dynamics were

investigated with ordinary differential equations and integro-

differential equations by Dixit and Perelson [13,14], and subsequently

investigated further in references [15,16], using ordinary differential
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equations and agent-based models. The effect of recombination,

which requires multiple infection, has been modeled, e.g. [17–19].

Competition was also incorporated into multiple infection models

[20,21]. The ordinary differential equations models that have been

reported are similar in structure compared to those in the field of

epidemiology, where multiple pathogens are assumed to infect hosts

[22–28].

Those models can be characterized by certain difficulties and pit-

falls, especially when investigating simplified formulations in terms

of ODEs. ODEs that describe multiple infection generally divide the

population of infected cells in subpopulations that are infected with

one, two, three etc. viruses. We refer to this as the “multiple infection

cascade”. In principle, this cascade can be infinite. In practical terms,

the number of cells infected with a multiplicity that lies above a cer-

tain threshold will be negligible, and thus the infection cascade can

be truncated. It is, however, unclear how exactly the truncation of the

cascade can affect the results. In the presence of competition, it has

been shown that certain truncated and simplified model forms can

lead to pathological outcomes, where the assumption of two identi-

cal (and thus competitively neutral) pathogens can lead to a unique

equilibrium [27].

In this paper, we examine in more detail ODE modeling approaches

to study the multiple infection of cells with viruses. We start by in-

vestigating how the truncation of the multiple infection cascade can

affect the outcome in different parameter regions in the context of

basic dynamics. We then expand the multiple infection models to

investigate the competition between two virus strains, taking into

account both competition for target cells (as in standard virus com-

petition models) and the competition for intracellular resources.

This analysis will be performed in the most general setting, with-

out considering one specific infection. The aim of this work is to gain a

better understanding of how model structure can influence outcome

in models that describe the multiple infection of cells by viruses. This

can form the basis for future work that applies this type of model

to specific infections, which will require careful consideration of

assumptions that are specific to the virus in question.

2. Results

2.1. Basic ODE models of multiple infection

Mathematical models of virus dynamics are often based on ordi-

nary differential equations, and this approach has also been used to

describe the infection of cells by multiple copies of the same virus

(multiple infection). Denoting the population of susceptible cells by

S, free virus by V, and the population of cells infected with i viruses

by Ii, the model is given as follows.

dS

dt
= λ − dS − βSV

dI1

dt
= βSV − a1I1 − βI1V

dIi

dt
= βIi−1V − aiIi − βIiV

. . . . (1)

dIn

dt
= βIn−1V − anIn

dV

dt
=

n∑

i=1

kiIi − uV

This is an extension of basic virus dynamics models [1–3], and

has been described first by Dixit and Perelson [13], with extensions

published subsequently [2,3]. Susceptible target cells are produced

with a rate λ and die with a rate d. Infection of susceptible cells by

virus occurs with a rate β , generating cells infected with a single

copy of the virus. These cells can be infected by further virus particles

Fig. 1. Distribution of the number of cells infected with i viruses, according to model

(1) where the rate of virus production does not depend on infection multiplicity. Singly

infected cells are most abundant, and the number of cells containing higher infection

multiplicities is successively lower. Parameters were chosen as follows. λ = 10; d = 0.1;

a = 1; β = 0.1; k = 1; u = 1; ε = 0. Infection cascade length n = 100.

with a rate β , generating cells infected with i copies of the virus.

This process can continue until the end of the infection cascade, In,

is reached. Cells in this population cannot be infected any further.

Infected cell populations die with a rate ai and produce virus with a

rate ki. Free virus decays with a rate u. In this formulation, the rate of

virus production, k, and the rate of infected cell death, a, can depend

on the multiplicity of infection, i, although it does not have to. In the

simplest form, these parameters do not depend on the multiplicity of

infection, as described by Dixit and Perelson [13]. In this case, virus

production is determined predominantly by cellular factors, keeping

the overall amount of virus produced constant and independent of the

number of viruses in the cell. Alternatively, it is possible that the rate

of virus production and the death rate of infected cells can increase

to a certain degree in multiply infected cells, a scenario considered

in [16]. In models that have been applied to HIV infection, it has also

been assumed that the ability of a cell to become infected can be lost

over time, as a result of e.g. receptor down-modulation [13]. This will

not be considered in the present context.

One aspect we would like to explore here is the dependency of

the dynamics on model structure. In particular, the ODE formulation

requires an arbitrary end to the infection cascade, In. The larger the

value of n, the more computationally expensive simulations of this

system become. The value of n, however, can impact the dynamics

that are observed in this model, and this will be investigated in the

following sections. First, it will be assumed that virus parameters

are independent of the infection multiplicity. Subsequently, we will

assume that multiply infected cells produce more virus during their

life-span than singly infected cells.

2.1.1. Virus parameters are independent of infection multiplicity

This system has been studied analytically before, and the reader is

referred to these analyses for details [13,16]. If the basic reproductive

ratio of the virus is greater than one, the virus and cell populations

converge to an internal, stable equilibrium, which has been defined

[13,16]. Here, we concentrate on the distribution of cells infected with

different multiplicities. The most abundant infected cell population

are singly infected cells, I1, and the abundance of multiply infected

cells, Ii, are successively lower (Fig. 1). The population size of the

infected cell sub-populations decline exponentially with increasing

multiplicities of infection (Fig. 2a), and the rate of this exponential

decline is given by ln( βλ−ad

βλ−ad−a2 ), and hence depends on the parame-

ters that determine the basic reproductive ratio of the virus. The faster

the basic reproductive ratio of the virus, the slower the rate of decline.

In other words, the singly infected cells become less dominant and the

distribution becomes more even for faster viral replication kinetics. In

the extreme case where the basic reproductive ratio of the virus is very

large, all infected cell sub-populations are almost equally abundant.

If the decline of the successive infected cell sub-populations is

relatively slow, the modeling approach discussed here can become

difficult. If the length of the multiple infection cascade, n, is not suffi-

ciently large, the majority of the infected cells will accumulate in the
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