
ARTICLE IN PRESS
JID: MBS [m5G;March 30, 2015;19:35]

Mathematical Biosciences xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Effects of dispersal on total biomass in a patchy, heterogeneous system:

Analysis and experiment

Bo Zhang a,∗, Xin Liu b, D.L. DeAngelis c, Wei-Ming Ni d,e, G. Geoff Wang fQ1

a Department of Biology, University of Miami, Coral Gables, FL 33124, USA
b Nanjing Forestry University, 210037 Nanjing, China
c U.S. Geological Survey, Department of Biology, University of Miami, Coral Gables, FL 33124, USA
d School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
e Center for Partial Differential Equations, East China Normal University, Minhang, Shanghai 200241, People’s Republic of China
f Department of Forestry and Natural Resources, Clemson University, Clemson, SC 29634-0317, USA

a r t i c l e i n f o

Article history:

Received 18 September 2014

Revised 7 March 2015

Accepted 18 March 2015

Available online xxx

Keywords:

Mathematical theory

Simulation modeling

Spatial heterogeneity

Laboratory experiment

Vegetation growth

a b s t r a c t

An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an

environment in which resources vary spatially will reach a higher total equilibrium biomass than the pop-

ulation in an environment in which the same total resources are distributed homogeneously. We extended

the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy

systems with dispersal among patches, both for continuous and discrete time. This allowed us to make spe-

cific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory

experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the

resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled

containers in one treatment, and distributed heterogeneously in another treatment. The experimental results

showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total

carrying capacity of the system and agreeing with the simulation model. The implications of the experiment

to dynamics of source, sink, and pseudo-sink dynamics are discussed.

© 2015 Published by Elsevier Inc.

1. Introduction
Q2

1

The effects of spatial heterogeneity and dispersal on populations2

and on ecosystem properties such as productivity are key issues in3

ecology. An interesting recent result from mathematics is that a popu-4

lation in an environment in which resources vary spatially will reach5

a higher total equilibrium biomass than the same population in an6

environment with the same total resources but where resources are7

distributed homogeneously [1–3], which they referred to as ‘a curi-8

ous fact indeed’. The mathematical result depends on the population9

being able to diffuse in space. This result from mathematical theory10

has implications for ecology. Ecologists attempt to understand the11

factors regulating populations in spatially structured habitats with12

regional factors such as spatially distributed environmental hetero-13

geneity and dispersal [4]. A number of ecological investigations car-14

ried out in recent years have established that spatial heterogeneity15

in the availability of soil-based resources can strongly influence the16

growth and patterns of biomass allocation of single plants [5]. How-17
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ever, these studies did not involve spatial diffusion, so results for the

Q3

18

two factors of spatial heterogeneity and diffusion together have, to 19

our knowledge, rarely been tested empirically, despite the relevance 20

of dispersal to key ecological issues. 21

Lou [1] considered a population in an inhomogeneous environ- 22

ment; i.e., where the population growth rate is a function of distance, 23

s, along one dimension, and g(s) �= constant, and where the popula- 24

tion can diffuse at some constant rate (D). He used an equation of the 25

form 26

∂X

∂t
= D

∂2X

∂s2
+ [g(s)− X]X, (1.1)

with Neumann (no-flux) boundary conditions on X. Here ‘resources’, 27

g(s), represent both growth rate and carrying capacity, and the re- 28

source level is assumed fixed externally. Lou [1] noted that, at equi- 29

librium, when both sides are divided by X and integration is performed 30

over all space �, the following holds; 31

D

∫
�

1

X(s)2

∣∣∣∣∂X(s)

∂s

∣∣∣∣
2

> 0, (1.2)
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which implies32 ∫
�

[X(s)− g(s)]ds > 0. (1.3)

The diffusion of individuals away from the areas of high productiv-33

ity keeps the population levels in those areas below carrying capacity,34

so that high production continues. The diffusion allows higher pop-35

ulation levels to be attained in the lower resource areas than the36

carrying capacity would predict. The result is that the total popula-37

tion over all space exceeds that which would occur in a homogeneous38

space with the same total resource production. In order to apply the39

above results to typical ecological models, it is necessary to extend40

(1) to a logistic equation
Q4
41

∂X

∂t
= D

∂2X

∂s2
+ r(s)[1 − X

K(s)
]X, (1.4)

where the maximum growth rate, r(s), and carrying capacity, K(s),42

are standard parameters in ecological models. It is useful at first to43

switch from continuous to discrete space (patches or compartments)44

to demonstrate in a simple manner how to make the extension. The45

discrete space model can then be used to simulate planned empirical46

experiments.47

The first objective of this research is to determine if the mathe-48

matical result of Lou [1] has relevance to empirical systems. That is,49

will a diffusing population in an environment with spatially varying50

resources reach a higher total equilibrium biomass than the popu-51

lation in an environment with the same total resources distributed52

homogeneously with diffusion? The second objective is to test the53

mathematical result that a hump-shaped pattern appears when the54

equilibrium biomass is plotted as a function of the rate of diffusion.55

2. Methods56

2.1. Discrete patch model57

The discrete patch model analogous to (1.4) uses logistic growth58

equations in which carrying capacities can be specified for a one-59

dimensional series of compartments linked through population diffu-60

sion. Consider n compartments, which have biomasses represented by61

the variables X1, X2, . . . , Xn (for example, grams dry weight biomass).62

Relevant equations for continuous diffusion among compartments63

are the following, in which there are fluxes between the two patches64

on either end as well (i.e., wraparound conditions);65

dXi

dt
= ri(1 − Xi/Ki)Xi − DXi + 1

2
DXi−1 + 1

2
DXi+1

(
i = 1, . . . , n

)
(2.1)

where it is understood that i-1 = n when i = 1 and i+1 = 1 when i = n.66

The system is described by the parameters, ri, Ki, and D. Here, ri67

(for example, day−1) is the maximum growth rate in patch i, while Ki68

(for example, grams dry weight biomass) is the carrying capacity for69

patch i, with ri (1 – Xi/Ki) being the actual growth rate at any time.70

The parameter D (day−1) is the diffusion coefficient.71

Use of two parameters, r and K, rather than the single parameter,72

g, differs from the mathematical model (1), but is more flexible in73

describing population growth. When ri and Ki take on independent74

values for each compartment i, it can be shown that there is no guar-75

antee that diffusion in a heterogeneous environment leads to greater76

equilibrium biomass than in the absence of diffusion. Specifically, it77

can be shown that the inequality78

∑
i=1,n

ri

Ki

(
Xi − Ki

)
> 0 (2.2)

holds for this system (see Appendix A), but this does not necessarily 79

imply that 80∑
i=1,n

(
Xi − Ki

)
> 0; (2.3)

i.e., the total biomass is greater in a heterogeneous system with diffu- 81

sion than without diffusion (analogous to (1.3) ). However, a criterion 82

for (2.3) can be found (see Appendix B); that is, the inequality 83

∑
i=1,n

(
(ri − ri−1)(Ki − Ki−1)

riri−1

)
> 0 (2.4)

guarantees that 84

Xtotal =
∑

i=1,n

Xi

increases as D increases from zero for small values of D, so that (2.3) 85

holds at least for small values of D. A sufficient condition for criterion 86

(2.4) to be satisfied is that Ki and ri both be increasing or both be 87

decreasing together. We have used simulations to exhaustively test 88

this result. A criterion parallel to (2.4) can be found for the spatially 89

continuous form with r(s) and K(s); that is, for 90

∂X

∂t
= D

∂2X

∂s2
+ r(s)

[
1 − X(s)

K(s)

]
X(s). (2.5)

The criterion for Xtotal = ∫
� X(s) to increase for small increases in D 91

from zero is now, 92∫
�

∂K

∂s
· ∂

∂s

(
1

r

)
< 0. (2.6)

The proof is outlined in Appendix C. Both (2.4) and (2.6) are new 93

mathematical results. 94

2.2. Discrete patch, discrete time model simulations 95

System (2.1), as written, represents continuous-in-time but 96

discrete-in-space diffusion. It was impractical to design an experi- 97

ment in which diffusion occurred continuously in time. Instead, an 98

artificial experiment was designed, in which diffusion was simu- 99

lated by manual transfer of floating aquatic plants between containers 100

(patches) with different nutrient levels. To represent this in a model, 101

Eq. (2.1) was discretized in time and the number of compartments 102

were set to n = 5. In the time-discretized version designed to rep- 103

resent the experiment, growth was assumed to occur according to 104

the logistic equation over equal time periods (Eq. (2.7a)), and then 105

amounts of biomass were transferred among compartments at regu- 106

lar time intervals: 107

dXi

dt
= ri(1 − Xi/Ki)Xi (tj(+) ≤ t ≤ tj+1(−)) (2.7a)

108

Xi(tj(+)) = Xi(tj(−))(1 − M)+ 1

2
MXi−1(tj(−))+ 1

2
MXi+1(tj(−))

for t = tj (2.7b)

where compartment numbers i + 1 = 1 when i = 5 and i - 1 = 5 when 109

i = 1, and where tj(-) means the value before biomass transfer (dif- 110

fusion) and tj(+) means the value after transfer. The new parameter 111

M represents the fraction moved between compartments at discrete 112

time intervals (every 4 days in the experiment), rather than a contin- 113

uous rate of diffusion. Because it was not possible to control Ki and 114

ri independently in the experiment through different nutrient con- 115

centrations, the mathematical results above imply that success of the 116

experiment in showing higher biomass at non-zero diffusion rates 117

depend on Ki and ri being positively correlated. 118
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