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a b s t r a c t

We study the interaction between different types of dispersal, intrinsic growth rates and carrying capacities

of two competing species in a heterogeneous environment: one of them is subject to a regular diffusion while

the other moves in the direction of most per capita available resources. If spatially heterogeneous carrying

capacities coincide, and intrinsic growth rates are proportional then competitive exclusion of a regularly

diffusing population is inevitable. However, the situation may change if intrinsic growth rates for the two

populations have different spatial forms. We also consider the case when carrying capacities are different.

If the carrying capacity of a regularly diffusing population is higher than for the other species, the two

populations may coexist; as the difference between the two carrying capacities grows, competitive exclusion

of the species with a lower carrying capacity occurs.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Spatial heterogeneity of the environment and species distribution

is an important characteristic in population ecology. The space move-

ments are usually modeled with a diffusion term, and a certain effort

was undertaken to explain the role of diffusion coefficients in het-

erogeneous environments. If the environment is heterogeneous, and

the per capita growth functions include a sum of population densities

then the population with the slowest diffusion survives in compe-

tition with similar species which differ by diffusion coefficient only

[12]. However, if we have a Lotka system with only partially shared

resources, the situation changes [27]: there is an asymptotically sta-

ble coexistence equilibrium once the difference between the diffusion

rates is not very significant. An interesting observation in [21] is the

evolutionary advantage of space-dependent carrying capacity com-

pared to the homogeneous carrying capacity with the same average

value over space.

For diffusing populations, not only the dispersal speed but also the

strategy has recently become an object of intensive discussion. This is
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aimed to address the following issue: as the diffusion coefficient tends

to infinity, regularly diffusing populations tend to be distributed uni-

formly which is not optimal in a heterogeneous environment in the

following sense. The ideal free distribution describes how species can

distribute themselves to maximize their total fitness in such a way

that any movement in an ideally distributed population will lead to

decrease in fitness; in a heterogeneous medium, this corresponds to

the case when per capita available resources, not the density, is uni-

formly distributed. To incorporate movements in the direction of the

environmental gradient, an advection term was added to the equation

[1,5–10,34] which led to ideally distributed solutions, at least in the

case when advection prevails over the random diffusion. The inter-

play of advection and diffusion coefficients in each of two competing

species was explored in the recent paper [10]. The dispersal type

which, independently of parameters involved in the equation, has

the ideal free distribution as a solution was developed in [3], and ac-

cording to [23], for a time-independent carrying capacity all positive

solutions tend to the ideal free distribution. Let us note that the ideal

free distribution was recently suggested as a null model for habitat

patch selection in [30], see [25] for some examples of species which

tend to disperse according to the inhomogeneous carrying capacity.

There were numerous studies on non-linear diffusion in biological

systems, let us note [31], the recent paper [13] and references therein.
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However, the focus of the investigation was on mathematical and/or

numerical modeling, in order to more exactly match the laboratory

data. If, as in [13], a competition was considered, the same type of dif-

fusion was involved in every equation. To the best of our knowledge,

before [12] the influence of diffusion on evolutionary success has not

been theoretically analyzed.

The evolutionarily stable strategy is understood in the sense of

[11,14]: if an evolutionarily stable strategy is adopted by a resident

population, it becomes impossible for a population choosing a dif-

ferent strategy to invade its habitat. In [25] evolutionary stability of

carrying capacity driven dispersal over the regular diffusion was jus-

tified, if all other parameters of the resident and invasive populations

coincide. In the present paper, both intrinsic growth rates and carry-

ing capacities for these two populations may differ.

The idea of superiority of the carrying capacity-driven diffusion

strategy compared to the regular (random) diffusion was first outlined

in [24] for the logistic growth. The main contributions of the present

paper compared to [24] can be summarized as follows:

1. In [24], only populations following the logistic growth law

were considered. Here we consider the variety of growth rules

(Gompertz, generalized logistic etc.)

2. In [24], the difference between the two populations is diffusion

strategy only. While it is important to study the influence of one

chosen factor only, in practice a competition involves many differ-

ent factors. Here an interplay of two couples of parameters is in-

vestigated: the first factor is always the diffusion strategy, and the

second one includes either carrying capacities or intrinsic growth

rates. With the same diffusion strategy, higher carrying capacity

would guarantee survival, but with inferior (regular) diffusion this

situation may lead to coexistence. We study how optimal diffu-

sion strategy can alleviate the negative influence of less efficient

resources exploitation (a lower carrying capacity).

3. The papers [24,25] include only theoretical results in time-

independent environments. The combination of theoretical and

numerical analysis allows to study the situation when the car-

rying capacity is time-dependent (for example, due to seasonal

changes), to confirm theoretical conclusions and to complement

them (for instance, to explore the dependency of the limit solution

on the diffusion coefficient for a regularly diffusing population).

The proofs of results of the present paper follow the schemes of

the proofs in [23,24] and use some ideas of the monograph [4].

In our present study, we consider different intrinsic growth rates

for both populations. If they are spatially similar (for example, pro-

portional), the situation does not differ from the equal growth rates,

which means competitive exclusion of a regularly diffusing popula-

tion. However, if the ratio of intrinsic growth rates is spatially hetero-

geneous, coexistence is possible. The two equations can also involve

different diffusion coefficients; their relation and values influence the

transient behavior and convergence rates to the stable equilibrium

state.

It is a common belief that a higher carrying capacity of an invader

leads to successful invasion and even extinction of the resident. For

example, in [33] the carrying capacity was associated with cell muta-

tions, where only the colony (mutating or not) with a higher carrying

capacity survived in a competition, see also [2]. The recent paper [18]

explored the conjecture whether the main reason for an invader to

replace antagonistic indigenous populations can be ascribed to the

larger carrying capacity of the former.

In our study, we considered two cases. In the first case, the mor-

tality term is referred to the crowding effect, the two types of species

have similar physical characteristics, including food consumption,

but may have different crowding tolerance: a population starts to

decrease when the local density exceeds some K which may be dif-

ferent for the two types. If higher (or at least not less) crowding

tolerance is incorporated with the directed dispersal while the other

population adopts random diffusion, the regularly diffusing popu-

lation goes extinct. If random diffusion is combined with a higher

crowding tolerance, we prove that this guarantees survival. If the

prevalence of this crowding tolerance over the one combined with

the directed dispersal is not very significant both populations coex-

ist. Thus diversity in dispersal strategies provides coexistence in this

range of parameters. Higher ratios of carrying capacities will bring

the population with a lower one to extinction, as numerical examples

illustrate. In the second case, the two species have different (space-

dependent) consumption rates. However, if these rates are propor-

tional, still competitive exclusion of a regularly diffusing population

is observed.

Spatial heterogeneity of the environments plays a crucial role in

our study; for the recent investigation of spreading or vanishing of

invasive species see, for example, the recent paper [35] and references

therein.

The paper is organized as follows. Section 2 describes the model

and verifies positivity, existence and uniqueness of a solution for any

non-negative (and not identically equal to zero) initial conditions.

Section 3 explores the equilibria, in particular, outlines the cases

when there is no coexistence. Section 4 includes the main results

of the paper: the strategy leading to the ideal free distribution has the

advantage of evolutionary stability if intrinsic growth rates are con-

stant and the randomly diffusing population does not have a higher

carrying capacity. If it does have, its survival is guaranteed, and nu-

merical examples in Section 5 illustrate that both coexistence and

competitive exclusion of the population with the carrying capacity

driven dispersal are possible. Section 5 also presents an example of

coexistence for different intrinsic growth rates, and Section 6 contains

a brief summary of the results of the paper and discussion.

2. Description of the model

In the present paper, we consider the system describing two popu-

lations competing for the resources which exist in the isolated domain

�. This corresponds to the initial-boundary value problem with the

Neumann boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
= D1�

(
u(t, x)

K1(x)

)
+ r1(x)u(t, x)g(x, u(t, x), v(t, x), K1(x)),

∂v(t, x)

∂t
= D2∇ · (

d(x)∇v(t, x)
)

+ r2(x)v(t, x)g(x, v(t, x), u(t, x), K2(x)),

t > 0, x ∈ �,
∂

∂n

(
u

K1(x)

)
= d(x)

∂v

∂n
= 0, x ∈ ∂�

(2.1)

and the initial conditions

u(0, x) = u0(x), v(0, x) = v0(x). (2.2)

We assume that Ki(x), ri(x), i = 1, 2 are in the class C1+α(�), and

Ki(x) > 0, ri(x) > 0 for any x ∈ �, and ri(x) > 0 in an open nonempty

subdomain of �. Here � is an open nonempty bounded domain of

R
n with ∂� ∈ C2+α, 0 < α < 1, and J1 × J2 a bounded subset of R

2.

The set J1 × J2 corresponds to the range of the solutions to (2.1) and

is determined by the corresponding upper and lower solutions.

For future reference, we denote Q = (0, ∞)× �, Q = [0, ∞)×
�, ∂Q = (0, ∞)× ∂�. To state the assumptions on the functions

f1(x, u, v, K) = r1ug(x, u, v, K) and f2(x, u, v, K) = r2vg(x, v, u, K), we

will need the following definition [28].

Definition 1. A function fi = fi(x, u1, u2, K) is said to be quasimono-

tone nonincreasing if for fixed x, K, ui, fi is nonincreasing in uj for

j �= i.

A vector-function f = (f1, f2) is called quasimonotone nonincreas-

ing in J1 × J2 if both f1 and f2 are quasimonotone nonincreasing for

(u1, u2) ∈ J1 × J2.
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