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a b s t r a c t

Physiologically realistic simulations of computational islets of beta cells require the long-time solution of

several thousands of coupled ordinary differential equations (ODEs), resulting from the combination of several

ODEs in each cell and realistic numbers of several hundreds of cells in an islet. For a reliable and accurate

solution of complex nonlinear models up to the desired final times on the scale of several bursting periods, an

appropriate ODE solver designed for stiff problems is eventually a necessity, since other solvers may not be

able to handle the problem or are exceedingly inefficient. But stiff solvers are potentially significantly harder to

use, since their algorithms require at least an approximation of the Jacobian matrix. For sophisticated models,

systems of several complex ODEs in each cell, it is practically unworkable to differentiate these intricate

nonlinear systems analytically and to manually program the resulting Jacobian matrix in computer code. This

paper demonstrates that automatic differentiation can be used to obtain code for the Jacobian directly from

code for the ODE system, which allows a full accounting for the sophisticated model equations. This technique

is also feasible in source-code languages Fortran and C, and the conclusions apply to a wide range of systems of

coupled, nonlinear reaction equations. However, when we combine an appropriately supplied Jacobian with

slightly modified memory management in the ODE solver, simulations on the realistic scale of one thousand

cells in the islet become possible that are several orders of magnitude faster than the original solver in the

software Matlab, a language that is particularly user friendly for programming complicated model equations.

We use the efficient simulator to analyze electrical bursting and show non-monotonic average burst period

between fast and slow cells for increasing coupling strengths. We also find that interestingly, the arrangement

of the connected fast and slow heterogeneous cells impacts the peak bursting period monotonically.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The endocrine system of the pancreas contains clusters of cells

called islets of Langerhans, which consist primarily of four different

types of cells [15]. The most common type of cell is the β-cell, which

is responsible for the secretion of insulin. Since diabetes is character-

ized by irregular levels of insulin, we are interested in developing a

numerical framework that will allow us to calculate and better under-

stand emergent dynamics that lead to the secretion of insulin. Many

models of β-cells have been developed that range in focus from elec-

trical bursting and exocytosis to glucose metabolism and have been

recently reviewed in Ref. [1]. Furthermore, models of networks of β-

cells have been developed [13,17,22]. We use a seven variable β-cell

model by Bertram and Sherman [2] and a comparable three variable

model by Sherman and Rinzel [8,21].
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As an example of a physiological question, we analyze in this paper

the effect of electrical coupling between heterogeneous cells in differ-

ing patterns of connectivity within a computational islet, represented

by a three-dimensional N × N × N cube of β-cells. On the physiolog-

ically realistic scale of N3 = 1000 cells in an islet, N in N × N × N

ranges up to 10. By concatenating all unknown variables into a vector

y of length 7N3 for the seven variable and 3N3 for the three vari-

able model, the matrix form of the initial value problems for both

islet models with N3 cells can then be written as a system of coupled

ordinary differential equations (ODEs)

dy

dt
= f (ode)(t, y) = f (t, y)+ G y, 0 < t ≤ tf , y(0) = y0. (1)

The two terms on the right-hand side distinguish explicitly the non-

linear reactions in f (t, y)and the coupling between cells involving the

matrix G. To capture several burst periods, the simulations for the

three variable model are required from 0 ms to 200,000 ms and for

the seven variable model the simulations from 0 ms to 500,000 ms.

The reaction equations in these models result in systems of ODEs

that are referred to as stiff, since the reaction speeds can vary widely,
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say between voltage dynamics and gating or endoplasmic reticulum

calcium dynamics. ODE solvers appropriate for stiff ODEs necessarily

require the Jacobian matrix J(ode)(t, y) = ∇yf (ode)(t, y)of the system of

ODEs. Since the simulations are needed for large final times to fully

capture at least several burst periods, the efficient performance of the

ODE solver is crucial. This is the focus of this work.

Some other work that takes into account multiple β-cells to create

an islet in three spatial dimensions includes Tsaneva-Atanasova and

Sherman [24], who consider electrical coupling and coupling in cal-

cium in a manner similar to our work in a 6 × 6 × 6 islet implemented

with Runge–Kutta time-stepping in Fortran 95. Other work by Sher-

man, Xu, and Stokes [22] considers a 5 × 5 × 5 islet to address the

impact of intercellular currents during an experiment where a single

islet cell is voltage clamped to record local transmembrane currents.

Our works [9] and [16] utilize the islet framework described here with

the seven variable model and further include coupling in metabolic

variables. Recent work by Pu et al. [17] includes the mention of com-

puter performance. They consider a hexagonal lattice of β-cells with

up to 1000 cells using LSODE in Fortran 90. They report that solving

a 10 variable model with 1000 cells for 2000 s of model time takes

26 h [17, p. 7]. This information gives an indication of the expected

computational load involved in simulations of the intended scale of a

seven variable model on N × N × N cells.

One of the crucial opportunities for a user to influence the perfor-

mance of a stiff ODE solver is the choice, how to supply the Jacobian

information. Choices range from supplying no information, which

results in the code computing a numerical approximation of it, to

providing a function that returns the values of the matrix J(ode)(t, y)
for inputs (t, y) whenever required by the ODE solver. This function

is analogous in interface to the function for f (ode)(t, y) that the user

has to provide to the solver in any case to specify the ODE problem

(1). But the function for the matrix J(ode)(t, y) is much more difficult

to supply, since an analytic formula for each derivative component

needs to be calculated and then hand-coded by the user. Since this

is a tedious and potentially extremely error prone process, automatic

differentiation is a tool that was developed to take the Fortran or

C code of a function and differentiate it symbolically. This is differ-

ent than conventional symbolic differentiation in that both input and

output of the process are functions in the same source code as the

input function, so it is directly usable as code for a Jacobian function

for an ODE solver for which one had to write code for the right-hand

side function anyway. It is clear that Matlab offers the same opportu-

nity for automatic differentiation as Fortran or C, but it has taken

longer for automatic differentiation libraries to become available.

We use the software package ADiMat for automatic differentiation in

Matlab [4].

This paper demonstrates the potential advantage of using auto-

matic differentiation in particular in Matlab: Matlab is a language

that allows readily the correct implementation of fairly complicated

nonlinear model equations, for instance for ODEs, and many users

prefer it for this reason over other (particularly source code) lan-

guages. By automatic differentiation, the programming of a Jacobian

is not a limiting factor any more. In particular, once the machinery

of the automatic differentiation is set up, it can readily be used again

to obtain a new Jacobian, if the model is changed in any way. This is

easier than it would be to hand-calculate the Jacobian again.

To analyze the effect of coupling between cells in a computational

islet, we consider an islet of β-cells with varying burst rates [14]. The

distribution of these cells is not known, therefore we are investigating

several possible distributions of slow bursting and fast bursting cells

and capturing their emergent behavior, and we introduce a quantita-

tive measure for the heterogeneity. It turns out that the arrangement

of the connected fast and slow heterogeneous cells impacts the peak

bursting period monotonically. We also observe that as the hetero-

geneity of an islet structure increases the peak coupling strength de-

creases. These simulations demonstrate that both the three variable

and the seven variable model have analogous dynamics. This justifies

the use of the three variable model as a stand-in for the more complex

model in the numerical analyses.

The remainder of this paper is structured as follows: Section 2 de-

scribes the physiological background and both the three variable and

seven variable models in detail; Section 2.4 specifically defines the

model of the coupling strength in (1). Section 3 motivates the inclu-

sion of all available numerical methods, specifies our modifications,

and describes the use of ADiMat in more detail. Section 4 contains

the full results of our physiological studies. Section 5 presents the

numerical performance studies for both models that drive home the

need for using an appropriate ODE solver designed for stiff problems

and that Matlab can also be an extremely efficient computational

tool. For instance, enabling physiologically realistic simulations for

the duration of several burst periods on an islet with 1000 cells that

takes on the order of 10 min instead of 10 h becomes possible. Finally,

Section 6 discusses the detailed conclusions that can be drawn from

all reported simulations.

2. Physiological models

In this section, we discuss the physiological background in

Section 2.1, we specify the full details of the three variable and seven

variable models in Sections 2.2 and 2.3, respectively, and we describe

cell coupling in an islet in Section 2.4.

2.1. Physiological background

Diabetes mellitus is a disease characterized by a high concentra-

tion of glucose in a person’s blood stream. The concentration of glu-

cose in the blood is regulated by insulin, a hormone produced by cells

in the pancreas. So, if the concentration of glucose in the blood stream

is too high, it is caused mainly by either an insulin deficiency or an

insulin resistance which means that insulin does not properly interact

with cells to signal glucose uptake. Type 1 diabetes corresponds to an

insulin deficiency due to an autoimmune attack on insulin-producing

β-cells, while Type 2 diabetes is caused by either an insulin resistance

or insulin deficiency. With statistics from January 2011 showing that

23.6 million people in the United States suffer from diabetes (Centers

for Disease Control and Prevention [5]), being able to model the cells

and their interactions which play a large role in diabetes would be

valuable.

The pancreas is an organ in the body which is part of both the en-

docrine system and digestive system. In the endocrine system in the

pancreas are clusters of cells called islets of Langerhans. These islets

contain α-cells, β-cells, δ-cells, and pancreatic polypeptide (PP) pro-

ducing cells along with distributed capillaries, with β-cells the most

common type of cell in an islet of Langerhans. An islet’s production of

insulin, the key hormone in blood glucose maintenance released by

β-cells, is related to both its metabolic and electrical activities.

The consensus model of stimulus-secretion coupling illustrates

how a β-cell responds to glucose entering the cell. In the consen-

sus model, after glucose enters the β-cell through the glucose trans-

porter GLUT2 it is converted into pyruvate through glycolysis and then

metabolized inside mitochondria. This process produces adenosine

triphosphate (ATP) and cellular energy at the expense of adenosine

diphosphate (ADP). The increase in ATP–ADP ratio results in the clos-

ing of KATP channels. This results in the depolarization of the β-cell

which allows calcium to enter the cell. The calcium triggers autocat-

alytic release of more calcium from the endoplasmic reticulum and

the exocytosis of insulin containing secretory granules. The insulin

causes the blood glucose to return back to basal levels by signaling

to cells throughout the body. As the glucose levels drop at the β-cell,

ATP–ADP levels also tend to recover, allowing the KATP channels to

open back up. The opening of these channels stops the depolarizing

electrical activity [3].
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