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a b s t r a c t

This paper considers an exploitation–competition system in which exploitation is the dominant interaction

when the prey is at low density, while competition is dominant when the prey is at high density due to its

negative effect on the predator. The two-species system is characterized by differential equations, which are

the combination of Lotka–Volterra competitive and predator–prey models. Global dynamics of the model

demonstrate some basic properties of exploitation–competition systems: (i) When the growth rate of prey

is extremely small, the prey cannot promote the growth of predator. (ii) When the growth rate is small, an

obligate predator can survive by preying on the prey, while a facultative predator can approach a high density

by the predation. (iii) When the growth rate is intermediate, the predator can approach the maximal density

by an intermediate predation. (iv) When the growth rate is large, the predator can persist only if it has a large

density and its predation on the prey is big. (v) Intermediate predation is beneficial to the predator under

certain parameter range, while over- or under-predation is not good. Extremely big/small predation would

lead to extinction of species. Numerical simulations confirm and extend our results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The dynamical framework of Lotka–Volterra models has formed

the backbone of ecological modeling. In the Lotka–Volterra predator–

prey model, the prey provides food and other resources for predator

and promotes its growth, while the predator benefits from the prey

and does it no good. The effect of one species on the other is either

positive or negative without sign change. In real situations, the effect

may be changeable. For example, the prey can have a negative effect

on predator when at high density [12,23,25]. Thus the Lotka–Volterra

predator–prey model should be expanded to characterize the change-

able interaction, which exhibits exploitation when at low density but

competition at high density. The exploitation–competition interac-

tion has been observed in real situations for years.

Exploitation–competition interactions widely exist in animal

systems. As shown by Polis et al. [16], rattlesnakes are food of adult

burrowing owls, while the snakes eat eggs and nestlings of the owls.

When the snakes are at low density, their net effect on the owls is

positive and exploitation is the dominant interaction. However, when

the snakes are at high density, the net effect becomes negative since

more eggs and nestlings are eaten and the growth rate of the owls

is reduced, and competition is the dominant interaction. Thus the
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interactions between the rattlesnakes and owls are density-

dependent and in the form of exploitation–competition. The second

example occurs in the system of ctenophores and fish [3,17]: the

ctenophores are food of adult fish, while they prey on the eggs and

larvae of these fish. In another study, Barkai and McQuaid [2] showed

that whelks are food of rock lobsters while they may overwhelm and

consume the lobsters when they are in high abundance. As a final

example, we cite the situation shown by Dayton [4]: “Copepods are

important predators on the larvae of fish that, should they survive,

become important predators on copepods. Indeed it is reasonable to

imagine that small plankters such as copepods, euphausids, chaetog-

naths, etc, are important predators on even very large carnivores

such as tuna. A terrestrial analogy would involve the spectre of say,

tigers or wolves releasing thousands of tiny tigerlets or wolflets,

which were largely consumed by spiders, lizards, birds, shrews, etc."

For more relevant works, we refer to Schaller [18,19], Margalhães

et al. [15], Hernandez [8], Kang and Wedekin [11], etc. While age-

structured models have been used to describe the systems, expanded

Lotka–Volterra models can demonstrate underlying mechanisms.

In plant–animal systems, there exist examples of exploitation–

competition interactions. As shown by Zhong et al. [27], grass is the

main food of herbivorous Brandt’s vole in an Inner Mongolian grass-

land in China. However, when the grass is at high density, it also acts

as an obstacle for these small herbivores to interact and communi-

cate. Thus the voles’ mating opportunity is reduced and their growth

rate is decreased. Therefore, exploitation is the dominant interaction
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between the grass and herbivores when the grass is at low density,

while competition is dominant when the grass is at high density.

Besides this direct negative effect of prey on its predator, there

is an indirect negative effect, as shown in experiments by Urabe and

Sterner [24]. In their experiments involving zooplankton and phyto-

plankton, algae was grown in batch cultures and zooplankton grazed

on the algae. Light energy and carbon could freely enter the system

from air as CO2, and light intensity could be changed to different

levels. The nutrient phosphorus was limited while other nutrients

were abundant. When the light intensity was enhanced, algal density

always increased monotonically, but the grazer’s density exhibited

different characteristic: as the light intensity was enhanced from low

levels to intermediate levels, both of the algal and grazer’s densities

increased; however, as the intensity was enhanced from intermediate

levels to high levels, the algal density increased but the grazer’s den-

sity decreased. This paradoxical result in energy terms was explained

by Urabe and Sterner [24] through stoichiometry of two elements,

carbon and phosphorous. Here, stoichiometry denotes “that branch

of the science which concerns itself with material transformations,

with the relations between the masses of the components” [14].

The explanation of Urabe and Sterner [24] can be briefly shown as

follows. In the experiments mentioned above, algal density increased

by enhancing photosynthetic fixation of carbon when light inten-

sity was high. Since the nutrient phosphorus in the system was lim-

ited, the phosphorus:carbon (P:C) ratio in algal biomass decreased.

However, the grazer must maintain a specific P:C ratio in its body

[1,22]. If the P:C ratio in algal biomass is lower than the specific value,

the grazer cannot consume the excess carbon obtained from algae

and has to excrete it. Thus, the algae growing at high light intensity

became low-quality resource, which led to decrease of the grazer.

Here, there exists a critical algal density (i.e., a critical light intensity),

above which the P:C ratio in algal biomass is less than the specific

value acquired by the graze and the algae has negative effect on its

grazer. Therefore, indirect competition between algae and its grazer

for phosphorus could result in transition of algae–grazer interactions

from predation to competition. For more relevant works, we refer to

Elser et al. [5–7], Sterner [20], Sterner et al. [21,22], etc.

Several researches have been focused on exploitation–

competition interaction. Holland and DeAngelis [10] made

consumer–resource models to characterize the exploitation–

competition interactions between animals. Numerical simulations

demonstrated that varying one parameter or population density of

species could lead to transitions of interaction outcomes between

predation (+ −)and competition (− −) in a smooth fashion. Loladze et

al. [13] constructed a two-dimensional Lotka–Volterra type model to

describe the algae–zooplankton system studied by Urabe and Sterner

[24]. It was assumed that the P:C ratio in algal biomass never falls

below a minimum and that the P:C ratio in grazer’s biomass main-

tains a constant value. Thus, the growth of both algae and its grazer

depends upon energy flow and element cycling. Theoretical analysis

on the model exhibited that indirect competition between the two

species for phosphorus could lead to transition of interaction out-

comes from predation (+ −) to competition (− −). This competition

can even lead to extinction of the grazer. Moreover, numerical sim-

ulations showed that the paradox of energy enrichment could occur

when the grazer is phosphorus limited. While these models exhibit

interesting features of exploitation–competition interaction, most of

them are rather complicated such that global dynamics of the models

cannot be shown as clearly as those of Lotka–Volterra predator–prey

model. Thus, forming an appropriate model and demonstrating basic

properties of exploitation–competition interaction is necessary.

In this paper, we consider an exploitation–competition model,

which is the Lotka–Volterra predator–prey model when prey is at low

density and is the Lotka–Volterra competitive model when prey is at

high density. Theoretical analysis demonstrates some basic properties

of exploitation–competition systems.

2. Model

In this section, we consider an exploitation–competition model in

which the two-species interaction is in exploitation when the prey

is at low density, while it is in competition when the prey is at high

density. The model is depicted by

dx

dt
= x(r1 − d1x − a12y),

dy

dt
= y[−r2 + a21x0 − a21f (x)− d2y], (2.1)

where x and y represent population densities of the prey and predator,

respectively. All parameters (except r2) in the system are positive. In

the first equation of (2.1), r1 denotes the intrinsic growth rate of the

prey, and r1/d1 represents its carrying capacity when in isolation from

the predator. The parameter a12 denotes the strength of predation.

We denote isocline l1 : r1 − d1x − a12y = 0, and function g1(x, y) =
x(r1 − d1x − a12y).

In the second equation of (2.1), the function f (x) = |x − x0|∗ is de-

fined as the absolute function |x − x0| while the function y = |x − x0|
is smoothed in a very small neighborhood of its vertex (x0, 0). When

x0 = 0, we have dy/dt = y(−r2 − a21x − d2y). Thus, −r2 is the per-

capita mortality (resp. growth) rate of the predator when −r2 < 0

(resp. −r2 > 0), which corresponds to obligate predation (resp. facul-

tative predation). d2 represents the degree of intraspecific competi-

tion among predators, while a21 represents the negative effect of prey

on the predator. We focus on solutions of (2.1) with x(0) > 0, y(0) > 0,

thus we have x(t) > 0, y(t) > 0 as t > 0.

Denote L2(x, y) = −r2 + a21x0 − a21f (x)− d2y. Thus the isocline

l2 : L2(x, y) = 0 consists of l21 and l22, as shown in Fig. 1. Since the

function g2(x, y) = yL2(x, y) is smooth and satisfies

∂g2

∂x
= a21y > 0 as x < x0,

∂g2

∂x
= −a21y < 0 as x > x0,

the prey has a positive effect on the predator when it is at low density

(x < x0), but has a negative effect on the predator when at high density
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Fig. 1. Isoclines l1 and l2 as r2 > 0, while l2 consists of l21 and l22. l1 and l2 are repre-

sented by blue and red lines, respectively. Q is the vertex of l2 and P1 is the intersection

point of l1 and the x-axis. l0 is a line connecting Q and P1, which is denoted by dashed

line. l1 and l2 intersect at two points: l1 and l21 intersect at P+ , while l1 and l22 intersect

at P− . x0 and x∗
0 are important values defined in Section 3 of this work. (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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