
Mathematical Biosciences 263 (2015) 143–160

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Some analytical and numerical approaches to understanding trap counts

resulting from pest insect immigration

Daniel Bearup a, Natalia Petrovskaya b, Sergei Petrovskii c,∗

a ICBM, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
b School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
c Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK

a r t i c l e i n f o

Article history:

Received 11 February 2014

Revised 19 February 2015

Accepted 25 February 2015

Available online 2 March 2015

Keywords:

Pest monitoring

Insect trapping

Random walk

Diffusion

Finite differences

a b s t r a c t

Monitoring of pest insects is an important part of the integrated pest management. It aims to provide

information about pest insect abundance at a given location. This includes data collection, usually using traps,

and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects

caught over a fixed time) remains a challenging problem. First, an increase in either the population density

or insects activity can result in a similar increase in the number of insects trapped (the so called “activity-

density” problem). Second, a genuine increase of the local population density can be attributed to qualitatively

different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing

an increase in trap count is important as different mechanisms require different control strategies. In this

paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation.

Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually

available only for a few special cases, whilst in a more general case the problem has to be solved numerically.

We choose finite differences as the baseline numerical method and show that numerical solution of the

problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate

approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the

corresponding boundary problem where different types of boundary forcing describe different scenarios of

pest insect immigration and reveal the corresponding patterns in the trap count growth.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Pest insect monitoring is an important component of the inte-

grated pest management (IPM) [6,20,28]. Its purpose is to obtain a

reliable estimate of the pest abundance based on data collected in

the field. A reliable estimate is required in order to help the IPM

specialists to make an informed decision about control measures,

e.g. application of chemical pesticides when the pest density ex-

ceeds a certain threshold [16,38] and yet to avoid their unjustified

use.

Data on insect abundance are usually collected with traps [26,36].

After a trap is set up in the field and has been exposed for a certain

time, it catches a certain number n1 of insects of a given species. This

number is called a trap count; if, for instance, the trap was exposed for

one day, it is called the daily count. In case n1 > 0, this can be regarded

as proof that the species is present in the vicinity of the trap. However,
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relating the trap count to the population density is a much more

difficult problem. Previous approaches tended to provide a relative

rather than absolute estimate [40]. Recently, [34,35] showed that,

if information is available about the insect movement pattern, the

population density can be obtained by placing the sequence of daily

counts against the predictions of a relevant mean-field mathematical

model of the population dispersal. The simplest model of this type

is the diffusion equation, which assumes that insects perform the

Brownian motion, and indeed there is considerable evidence that

they often do so [41] although this may not always be readily seen

from data [19,33].

The diffusion equation is a well-known and well-studied model

and, in case of one spatial dimension, its general solution can

usually be found analytically, albeit not always in a compact form.

The situation is essentially different in case of higher dimension.

In a 2D case, analytical solution of the diffusion equation is only

possible if the domain possess a certain symmetry, e.g. has the

shape of a rectangle or a disk. Even then, however, the analytical

solution often becomes impractical. For instance, in a disk-shaped

domain, the solution can only be obtained as an infinite series
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where the coefficients are solutions of transcendent algebraic equa-

tions and hence can only be found numerically. In this situation,

i.e. when numerical methods have to be used anyway, a reasonable

alternative approach is to solve the diffusion equation numerically

right away instead of using the semi-analytical method described

above.

In this paper, we use a combination of analytical and numerical

approaches to investigate the patterns in the trap count resulting

from different boundary conditions as given by different ecological

situations. One of the goals of pest insect monitoring is to detect

an early sign of population growth in order to prevent a pest out-

break. It is therefore important to understand how an increase in

the population density can be reflected by the trap count. It seems

intuitively obvious that a larger population size should eventually

result in a larger trap count. The rate of increase can, however, be

different as an increase in the total population size can be attributed

to different reasons. It can result from the growth of the local pop-

ulation, i.e. the population inside the given field, and indeed some

insect species are capable of producing several generations in one

year. It can also result from migration of the pest into the field from

an external source, i.e. from another habitat. For the goals of pest

control, it is important to distinguish between these situations (as

the control measures are likely to be different) as well as between

different immigration patterns. Misidentification of the reason be-

hind the pest abundance increase can result in a completely wrong

estimate of the pest population density and that can have a detri-

mental effect on the efficiency of control measures. Here we are

mostly concerned with the effect of immigration as the most com-

mon scenario; the effect of local population growth will be considered

elsewhere.

There are a variety of numerical methods that can be used to

solve numerically the diffusion equation; e.g. see [39]. However, we

mention here that that their applicability and efficiency depend on the

geometry of the domain. A typical domain in the trapping problem is

not simply connected as it has an external boundary (i.e. the boundary

of the monitored farm field) and the internal boundary (the boundary

of the trap). Moreover, the size of the trap is usually much less than

the size of a typical farm field; therefore, the problem has at least

two clearly different spatial scales. Application of standard methods

to a system like this may bring significant computational difficulties

[32]. Besides, in order to calculate the trap count, one has to calculate

the population density gradient at the trap boundary. This can be a

challenging task, especially at the corner points if the trap has a shape

other than circular, and indeed use of traps of various shapes and

designs has been increasingly common (cf. [12]). Thus, we have to pay

a special attention to numerical issues before discussing ecological

results.

The paper is organized as follows. In Section 2.1, we describe the

mathematical model and provide a comprehensive analytical study

of trap count in the baseline 1D case under various migration scenar-

ios. Although the 1D case is hardly realistic, it provides an important

theoretical background for the understanding of a more realistic 2D

case. We then briefly revisit the finite-difference method for numer-

ical solution of the diffusion equation and show how it can be used

to calculate the trap count in the 1D case (Section 2.2). In Section 3,

we carefully test our computational technique against the analyti-

cal results in the 1D case. In Section 4, we apply our approach to

a hypothetical 1D system in order to reveal generic patterns in the

trap count arising from different ecological scenarios. In Section 5,

we consider an extension of our method onto the more realistic 2D

case and discuss the arising computational issues. We then provide

a thorough analysis of trap count for different immigration scenar-

ios by solving the 2D diffusion equation numerically (Section 6).

Finally, in Section 7 we discuss the ecological implications of our

results.

2. Mathematical model and numerical method, 1D case

2.1. Model

Since the focus of this paper is on the effect of immigration, we

neglect the population reproduction, thus assuming that trap counts

are collected in the period between the generations. Additionally,

for the sake of simplicity, we neglect the population losses due to

mortality. The equation describing the population dynamics in space

is then essentially the mass conservation law which, in the 1D case,

has the following form:

∂u(x, t)

∂t
+ ∂ j(x, t)

∂x
= 0, (1)

where u(x, t) is the population density at the position x and time t, and

j is the population density flux in the direction of axis x. The mathe-

matical description of the flux depends on the type of the individual

movement. In a relatively general case, individual insects perform

a combination of the non-directed random-like movement that can

often be regarded as the Brownian motion [25,41], and a directed

movement with a certain speed v. The corresponding population flux

is then given by

j(x, t) = − D
∂u(x, t)

∂x
+ vu(x, t), (2)

where D is the diffusion coefficient. Whilst the directed movement

becomes important in the presence of environmental gradients, the

non-directed random-like motion is an inherent property of almost

all ecological populations.

Insect monitoring is done with traps. Once an insect encounters

the trap, it is caught with a certain probability p0 < 1 where p0 de-

pends on the species traits and the trap design. Throughout this paper,

we assume that the trap design is sufficiently efficient so that p0 ≈ 1.

Indeed, this is often the case with walking insects, even for a simple

pitfall trap design. With regard to the effect of species traits and/or the

movement mode, many insects combine flying with walking. Whilst

flying is the preferred movement mode when insects travel over long

distances (e.g. looking for a new feeding or breeding ground), their

movement on the feeding site is typically a combination of walking

and very short flights. Correspondingly, here we assume that, once the

insects arrive at the farm-field, they mostly move around by walking.

Regarding the trap design, traps can be either baited or non-

baited. Baited traps use a certain substance (e.g. pheromone) or agent

(e.g. light or color) in order to attract insects to the trap. This intro-

duces an advective component to the insect movement as they are

more likely move towards the trap rather than in any other direction.

In contrast, non-baited traps do not introduce any directional bias as

they capture insects just because of their random encounters with the

trap. In this paper, we focus on non-baited traps only; consideration

of baited traps involves an essentially different set of assumptions

(in particular, about the insect’s behavioral response to the attracting

agent) and hence will be done elsewhere [3].

Let us consider an idealized 1D farm-field described by the domain

0 < x < L. We assume that the field is homogeneous and the trap is

non-baited. Correspondingly, inside this domain – but not necessarily

outside, see below – the monitored insect population performs only

random motion, i.e. v = 0 in Eq. (2). From Eqs. (1) and (2), we then

obtain the diffusion equation:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (3)

The trap, which we assume to be escape-proof, is installed at the

left-hand side boundary of the domain, i.e. at x = 0. The corresponding

condition at the trap boundary is

u(0, t) = 0. (4)
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