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a b s t r a c t

Renal blood flow is maintained within a narrow window by a set of intrinsic autoregulatory mechanisms.

Here, a mathematical model of renal hemodynamics control in the rat kidney is used to understand the inter-

actions between two major renal autoregulatory mechanisms: the myogenic response and tubuloglomerular

feedback. A bifurcation analysis of the model equations is performed to assess the effects of the delay and

sensitivity of the feedback system and the time constants governing the response of vessel diameter and

smooth muscle tone. The results of the bifurcation analysis are verified using numerical simulations of the

full nonlinear model. Both the analytical and numerical results predict the generation of limit cycle oscillations

under certain physiologically relevant conditions, as observed in vivo.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many biological systems exhibit spontaneous limit cycle oscilla-

tions. The mechanisms that give rise to such biological oscillators are

intrinsically nonlinear; indeed, no linear system has robust limit cy-

cle behavior. One example of biological limit cycle oscillations occurs

in the kidney [1,2]. The kidney regulates the balance of water, salt,

and blood pressure via filtration, reabsorption, and secretion of the

appropriate amounts of water and solutes across the epithelia of re-

nal tubules known as nephrons. A nephron consists of a glomerulus,

which is a bundle of capillaries, and a tubule whose walls consist

of a single layer of epithelial cells. Blood is delivered via the affer-

ent arteriole to the glomerulus, where the filtration process begins.

Blood cells and large plasma proteins are retained in the blood stream,

while fluid and smaller solutes (now called filtrate) are forced out into

Bowman’s capsule, the entrance of the tubule. The resulting filtrate

travels through the tubule, where the transformation of the filtrate

into urine is initiated. Along the tubule, the filtrate (tubular fluid)

composition is altered by transport processes in the epithelial cells of

the renal tubule. In particular, the thick ascending limb (TAL), a water-

impermeable portion of the tubule in a zone called the loop of Henle,

actively and passively transports sodium chloride from tubular fluid
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into the interstitium outside of the tubule where molecules and ions

can be reabsorbed by the bloodstream through nearby capillaries.

To maintain normal renal function, fluid flow through the nephron

must be kept within a narrow range. This is accomplished primarily

by two physiological regulatory mechanisms: the myogenic response

and tubuloglomerular feedback (TGF). The myogenic response in-

duces vasoconstriction in response to increases in blood pressure.

In TGF, changes in the chloride ion concentration in the TAL are de-

tected by a collection of epithelial cells at the exit of the TAL called

the macula densa (MD). This generates feedback signals that alter

the afferent arteriolar smooth muscle tone in order to regulate the

glomerular filtration rate. Fig. 1 is a schematic diagram illustrating

the anatomy involved in these regulatory mechanisms. The reader

may also refer to [3] for additional detail on kidney physiology.

Spontaneous fluctuations of fluid flow and oscillating intratubular

pressure have been observed in the rat kidney [1,2,4–8]. Mathemati-

cal models of the TGF mechanism have successfully simulated these

phenomena [9–12], and sensitivity analysis of these models has sug-

gested the oscillatory or steady state behavior depends on physical

and transport characteristics of the TAL. We have recently devel-

oped a renal hemodynamics model that combines both the myogenic

and TGF mechanisms and used the model to study renal autoregu-

lation [13]. In the present study, we use this model to explore the

influence of key bifurcation parameters, including the feedback loop

sensitivity, delay, and time constants that govern changes in the diam-

eter and smooth muscle tone of the afferent arteriole. Frequencies of
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Fig. 1. Schematic diagram of the major components of a kidney nephron. As detailed

in Section 2, the present model includes a partial differential equation (PDE) for the

chloride ion concentration in the thick ascending limb (TAL), and ordinary differential

equations (ODEs) for the afferent arteriolar diameter and smooth muscle tone. The

chloride concentration at the end of the TAL is sensed by the macula densa (MD),

causing adjustments in the afferent arteriolar diameter and tone, which in turn impact

the chloride ion concentration by changing the flow rate entering the TAL.

periodic solutions simulated from our model are in agreement with

those observed in the literature [14].

We present the details of the first analytical bifurcation analysis

on the renal hemodynamics model with both autoregulatory mecha-

nisms. We compare the bifurcation results to the full numerical sim-

ulations of the mathematical model for certain parameter values. The

bifurcation analysis allows us to understand the global behaviors of

the model (i.e., its behaviors over a very large range of parameters), as

opposed to direct numerical simulations, which typically cover only a

small range of parameters and must be repeated for each combination

of parameter values. The major contribution of the present work is the

mathematical formulation for the bifurcation analysis that facilitates

the exploration of the parameter space in a way that augments the

current experimental capabilities for determining the physiological

responses in different parameter ranges.

2. Model formulation

The mathematical model used in this study to investigate poten-

tial bifurcation parameters was recently described [13]. Briefly, the

model captures the flow dynamics along a short loop of Henle in a

rat kidney by coupling a partial differential equation (PDE) describing

chloride ion transport along the TAL of a short-loop nephron with

a system of ordinary differential equations (ODEs) describing vessel

wall mechanics of the afferent arteriole. The resulting system includes

the effects of both the myogenic and TGF responses. The model takes

the form

∂
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where C(x, t) is the concentration of chloride ions in the TAL at po-

sition x and time t, with x = 0 at the bend in the loop of Henle and

x = L at the upper end of the TAL at the MD, while D(t)and A(t)are the

diameter and smooth muscle tone (activation), respectively, of the af-

ferent arteriole. The functional forms of F(D(t)) and Ce(x) are given in

Eqs. (2.4)–(2.6). As given explicitly in Eqs. (2.7)–(2.11), Ttotal is a func-

tion of D(t) and A(t), while Atotal is a function of D(t) and C(L, t − τ).
The parameter τ gives the time required for transmitting the signal

of the chloride ion concentration sensed in the MD to the afferent

arteriole, including any associated lag in response; thus the system is

properly one of delay differential equations (DDEs) with time delay

τ . Values for all parameters appearing in Eqs. (2.1)–(2.3), as well as

parameters appearing in the subsidiary functions detailed below, are

given in Table 1. We refer to these as reference values, and to the

resulting model solution as the reference state.

The PDE (2.1) represents axial advective chloride ion transport,

outward-directed active solute transport, and transepithelial chloride

ion diffusion. The flow rate, F(D(t)), appearing in the advective term

of Eq. (2.1) has the explicit form

F(D(t)) = αβQA = αβ
πD(t)4�P

128 μl
. (2.4)

Here QA is the afferent arteriole flow rate which, in accordance with

Poiseuille’s law, depends on diameter, D(t); pressure drop along the

afferent arteriole, �P; viscosity, μ; and afferent arteriole segment

length, l. The parameter β represents the fraction of the afferent

arteriole flow entering the loop of Henle. The quantity Q = βQA is

commonly referred to as the single nephron glomerular filtration rate

(SNGFR), and α is the portion of the SNGFR that is not reabsorbed

along the proximal tubule or the descending limb of the loop of Henle

before entering the TAL. Note that the TAL is assumed to be water

impermeable, so that fluid flow along the TAL is constant in space,

although it may vary in time.

The second term in Eq. (2.1) represents active NaCl reabsorption

and is assumed to follow standard Michaelis–Menten kinetics. The

last term describes chloride ion diffusion across the TAL with perme-

ability p, while Ce(x) is the extratubular chloride ion concentration,

which is assumed to be time independent. Ce(x) is given as [11]

Ce(x) = C0(Be−2x/L + (1 − B)), (2.5)

where

B = 1 − Ce(L)/C0

1 − e−2
. (2.6)

The extra- and intratubular chloride ion concentrations are assumed

to be equal at the bend of the loop of Henle, so that the bound-

ary condition for chloride ion concentration is given by a constant:

C(0, t) = C0 = 275 mM [11].

We use a previously developed vessel wall mechanics model

[22,23] to predict changes in the diameter and smooth muscle tone of

the afferent arteriole according to the myogenic and TGF mechanisms.

The quantities Pavg and Pavg,c appearing in Eq. (2.2) refer to midpoint

pressures in the afferent arteriole; these are determined by the in-

coming pressure and pressure drop, i.e., Pavg = P − �P/2, where P is

the intraluminal pressure entering the afferent arteriole. Pavg,c is the

midpoint pressure with the control (baseline) incoming pressure of

100 mmHg, whereas Pavg may vary. In the present study, the pressure

P is fixed at 100 mmHg so that Pavg does not change and the dynamics

over a wide parameter range can be assessed. In our previous work

[13], we explored the effects of pressure change on the system by

varying afferent arterial pressure between 60 and 180 mmHg. Future

studies will combine both investigations to assess simultaneously the

effect of varying parameter values and average pressure values on the

appearance of limit cycle oscillations.

The total tension in the afferent arteriole wall is expressed as a

sum of passive and active components:

Ttotal(D(t), A(t)) = Tpass(D(t))+ A(t)Tmax
act (D(t)), (2.7)
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