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a b s t r a c t

This work focuses on optimal vaccination policies for an Susceptible–Infected–Recovered (SIR) model; the

impact of the disease is minimized with respect to the vaccination strategy. The problem is formulated

as an optimal control problem and we show that the value function is the unique viscosity solution of

an Hamilton–Jacobi–Bellman (HJB) equation. This allows to find the best vaccination policy. At odds with

existing literature, it is seen that the value function is not always smooth (sometimes only Lipschitz) and the

optimal vaccination policies are not unique. Moreover we rigorously analyze the situation when vaccination

can be modeled as instantaneous (with respect to the time evolution of the epidemic) and identify the

global optimum solutions. Numerical applications illustrate the theoretical results. In addition the pertussis

vaccination in adults is considered from two perspectives: first the maximization of DALY averted in presence

of vaccine side-effects; then the impact of the herd immunity on the cost-effectiveness analysis is discussed

on a concrete example.

© 2015 Elsevier Inc. All rights reserved.

1. Outline of the paper

1.1. Background on vaccination strategies

The mathematical modeling of the spread of an infection disease

allows to propose control strategies to decrease the cost of the epi-

demic. Among such control strategies we focus in this work on the

vaccination. A vaccination policy indicates when and how many peo-

ple should be vaccinated in order to minimize the overall impact

of the epidemic. We consider here a cost that sums the cost of the

infected individuals and the cost to vaccinate the individuals (see for-

mula (3) below for the mathematical definition). We also apply the

same methodology to cost-effectiveness analysis in the context of a

constrained public health budget.

1.2. State of the art and motivation

The mathematical analysis of the cost, as a function of the vaccina-

tion policy, allows to obtain an optimal vaccination strategy. Consider

the epidemic in Fig. 1 (see caption for the detail of the parameters)
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where the abscissa represents the number of the susceptible in the

population, and the ordinate the proportion of infected people. In

the literature several proposals for the best vaccination strategy are

presented (see for example [1–4]); however previous works operated

under specific assumptions on the value function (see below) and

consequently did not always selected the best vaccination policy.

For instance, as we illustrate in Fig. 1 the solution available in the

literature is, in some cases, not optimal. The two curves represent

two scenarios for an epidemic starting for an initial point X0. The

solid curve represents the epidemic evolution when there is no vac-

cination (the state of the art solution for this set of parameters) and

the dashed curve plots the epidemic evolution when there is some

partial vaccination. The partial vaccination is seen to outperform the

no vaccination policy.

For further information see the literature review in Section 2.4.

1.3. Methodology and results

Prompted by this remark we look in this work into the details of the

calculation of the best vaccination strategy (using the technique of the

“viscosity solutions”) and note that all previous works used a specific

assumption which is not always true; we explain precisely when

the assumption is correct (and thus the previous works identified

correctly the optimal vaccination policy) and when it is not (and in

this case we describe the best vaccination policy).
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Fig. 1. Two trajectories of an epidemic evolution (corresponding to the SIR model in

Eqs. (1)) are presented. The epidemic starts from X0 = (0.79, 0.0053). The parameters

used are β = 73, γ = 36.5, umax = 100, rI = 1 and rV = 1.5 (see formula (3) for the

meaning of the parameters rI and rV and Section 2.2 for umax). The solid curve represents

the epidemic evolution when there is no vaccination (which is the state of the art

solution, see [1,3,4]) and the dashed curve plots the epidemic evolution when there is

some partial vaccination. The cost for the first trajectory is 0.51 and for the second is

0.49.

1.4. Structure of the paper

The paper is organized as follows: in the next section we

describe the mathematical model (Section 2.1), the admissible

vaccination policies (Section 2.2), introduce some notations in

Section 2.3 and give an overview of the contributions from the lit-

erature in Section 2.4; finally we present some technical obstacles in

Section 2.5.

In Section 3 several applications of the theoretical results (proved

in Appendixes D and E) are presented. A summary of the numeri-

cal procedure to find the best vaccination strategy is the object of

Section 4.

Then in Section 5 we consider two applications to the optimal

pertussis vaccination in adults. Finally, conclusions are the object of

Section 6.

2. Model, notations and first remarks

2.1. The model

In order to model the evolution of an epidemic, we use an SIR

(Susceptible–Infected–Recovered) compartment model (cf., [5–7] for

additional details).

We seek to optimize the cost of the vaccination policy; to this end

denote by V(t) the proportion of people vaccinated by the time t (of

course limt→∞ V(t) ≤ 1); we consider vaccines that confer lifetime

immunity so that V is an increasing function. The evolution of the

disease is described by the following equations:⎧⎪⎪⎨
⎪⎪⎩

dX1(t) = −βX1(t)X2(t)dt − dV(t), X1(0) = X10,

dX2(t) = (βX1(t)X2(t)− γ X2(t))dt, X2(0) = X20,

dX3(t) = γ X2(t)dt, X3(0) = X30,

X4(t) = ∫ t

0 dV, X4(0) = 0.

(1)

Here X1, X2, X3, X4 are the proportion of people in the “suscep-

tible” respectively “infectious”, “recovered” and “vaccinated” classes.

Initially X1(0)+ X2(0)+ X3(0) = 1 and X4(0) = 0 (but X4 need not be

continuous in 0). See Fig. 2 for a graphical view of system (1). Note

that (1) implies X1(t)+ X2(t)+ X3(t)+ X4(t) = 1, ∀t ≥ 0.

Here β is the transmission rate of the disease, V is the control to

be optimized and γ is the recovery rate.

We denote rV the unitary cost associated with vaccination includ-

ing the cost of the vaccine and all possible side-effects and rI the

Susceptible Infected Recovered

Vaccinated

−dV

−βX1X2dt −γX2dt

Fig. 2. Graphical illustration of the SIR-V model.

unitary cost incurred by infected persons. To simplify the presenta-

tion we suppose that costs are expressed in money and postpone to

Section 5 the more realistic and interesting situations when costs are

expressed as medical conditions.

The cost of the disease is independent of the classes X3 and X4 (but

dependent on the control V(t)), so we can restrict ourselves to the

evolution of X1 and X2. From now on a vector X will only be supposed

to have two coordinates X1 and X2. Denoting:

� = {X = (X1, X2) ∈ R
2 | X1, X2 > 0, X1 + X2 < 1}, (2)

we will work under the constraints X ∈ �.

We introduce �Y,dV(t) = (�Y,dV
1 (t),�Y,dV

2 (t)) to denote, at time

t ≥ 0, the solution of the system (1) starting at point X(0) = Y and with

control dV; in addition Z = �Y,dV(·)(−t) means Y = �Z,dV(t−·)(t) (the

reverse system has a well defined mathematical meaning). To ease

notations, when the measure dV is absolutely continuous with respect

to the canonical Lebesgue measure dt on [0, ∞[ i.e., when dV can be

written dV = u(t)dt we will also write �Y,u(t)(t) instead of �Y,u(t)dt(t)

(and the same for the components �Y,u(t)dt
1 (t) and �Y,u(t)dt

2 (t)).

Remark 1. Here and in all that follows we consider the interval [0, ∞[

open at infinity. This simply means that ∞ is not an admissible value

and no strategy can vaccinate at t = ∞; on the contrary instantaneous

vaccination at t = 0 is possible.

The cost of the disease is:

J(Y, dV) =
∫ ∞

0

rIβ�Y,dV
1 (t)�Y,dV

2 (t)dt +
∫ ∞

0

rV dV(t). (3)

Moreover we will use the following notation J0(Y) = J(Y, 0); note

that J0(Y) is a cost proportional with the number of people infected

in absence of vaccination. This number will be denoted ζ (Y) thus

J0(Y) = rIζ (Y) (see Appendix A for the properties of ζ ).

Remark 2. Equation (1) implies

�X,dV
2 (∞) = �X,dV

2 (0)+
∫ ∞

0

d�X,dV
2 (t)

= �X,dV
2 (0)+

∫ ∞

0

(β�X,dV
1 (t)�X,dV

2 (t)− γ�X,dV
2 (t))dt.

(4)

Thus, since �X,dV
2 (∞) = 0:∫ ∞

0

rIβ�X,dV
1 (t)�X,dV

2 (t)dt =
∫ ∞

0

rIγ�X,dV
2 (t)dt − �X,dV

2 (0). (5)

This allows to conclude that the cost functional

Jd(Y, dV) =
∫ ∞

0

rd
I �

Y,dV
2 (t)dt +

∫ ∞

0

rV dV(t) (6)

with rd
I = rIγ satisfies

Jd(Y, dV) = J(Y, dV)+ Y2. (7)

Both Jd and J will thus have same optimal strategies (because their

difference is independent of the strategy dV). Here rd
I can be seen as

the unitary cost of infection per unit time.
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