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a b s t r a c t

In this paper, we study the role of autophagy in yeast cell population dynamics in response to starvation by a

mathematical model based on the logistic growth model. We analytically study the boundedness of solutions,

and the existence and stability of equilibrium states under general biologically acceptable assumptions.

Finally, we perform numerical studies for Saccharomyces cerevisiae response to starvation with autophagy.

The results show that autophagy is valuable in maintaining cell population in starvation, and attenuating

population fluctuations in response to perturbations in environmental nutrients. Furthermore, we show that

proper level autophagy promotes cell survival through the inhibition of cell death by autophagy as well as

the secretion of nutrients from autophagic cells, however excessive autophagy can decrease cell population

due to autophagic cell death.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The word autophagy was first introduced by de Duve in 1963

which means “self-eating” in Greek [1]. Biologically, autophagy is

a highly conserved catabolic process in which cells eat their own

cytoplasmic components to promote survival. During autophagy, cy-

toplasmic components including long lived proteins, cytoplasm and

organelles are delivered to lysosome (vacuole in plants or yeasts) for

degradation, and monomeric units (such as amino acids) from the

degraded macromolecules are transported back to cytosol for reuse

[1–3]. Autophagy is classified into three types according to the way of

how cargo is transported to lysosome (or vacuole): macroautophagy,

microautophagy and chaperone-mediated autophagy [2,4]. Among

which macroautophagy that is characterized by double-membrane

vesicular structures (autophagosomes) is the major type of autophagy

[3]. Hereafter we always refer macroautophagy as autophagy [5,2,6].

Autophagy is maintained at a basal level in normal niche, and can

be highly induced by starvation or other stresses in order to support

metabolism and cell survival [2,3,6]. Autophagy is not only an im-

portant way of degradation for removing stable proteins, but also a

powerful mechanism for stress response. Nevertheless, excessive au-
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tophagy can promote cell death that is called type II programmed cell

death [7,8]. Autophagic dysfunctions associate with many diseases

including neurodegradation, liver disease, heart disease, myopathies

and various types of cancers [4,9,10]. Autophagy has been getting

more and more attentions in recent years.

Autophagy is a way of cytoprotection during nutrient depletion

by generating endogenous metabolites that are necessary to main-

tain cell viability [11], and thus plays important roles in maintaining

cell population in many situations from mammalian tissue growth

to cell culture. Autophagy is crucial for tumor growth. In the cen-

tral part of a tumor, autophagy can result in adaptive response for

cancer cells survival and tumor growth when energy limitation and

insufficient blood-supply that fail to provide necessary metabolic re-

sources for maintaining cell cycles [3]. Autophagy inhibition is known

to be able to induce tumor cells death in mouse models [12]. In ex-

periments, starvations of amino acids or nitrogen are often used to

induce autophagy in mammalian or yeast cells [3]. Cells with normal

autophagy show robust population maintenance during starvation,

while impaired autophagy sensitizes cells to starvation-induced cell

death and thus results in a population loss in culture cells [13,14].

It has been a long history for the study of cell population dynam-

ics. Many models have been established and well studied to explain

various cell growth curves under different conditions. Among these

models, the logistic type models, first established by Verhulst in 1838

[15], is a basic paradigm in population ecology [16,17]. The logistic

model is a reasonable approximation of growth behavior in many sit-
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uations and is qualitatively correct in that it captures the phenomenon

of exponential growth at low population levels and saturation in the

case of high population levels. Many biological systems, such as yeast

growth, herding behavior of African elephants and population growth

for Peruvian anchovies, can be well described by the logistic curve

[18–20]. The classical logistic model has been widely developed and

various form models were proposed, including the new model with

low growth rate during a lag phase [21], the bi-logistic growth model

for two phases growth cells [22], and diffusive model for species trans-

portation [23], etc. However, to the best of our knowledge, the logistic

type models are not developed to include cell autophagy response

to nutrient limitation. In the starvation, cells undergoing autophagy

can produce nutrient resources to supply the survival of other cells.

Hence autophagy introduces a feedback to the nutrients supplement,

and can add novel features to the logistic model.

In this paper, we consider a logistic type model including dynamic

nutrients supplement and cell autophagy to study cell population

dynamics in response to starvation. We analytically study the mathe-

matical aspects of the model, including the boundedness of solutions,

existence and stability of equilibrium states under biologically ac-

ceptable assumptions. Finally, we perform numerical simulations to

examine the roles of autophagy and compare our results with exper-

iments of Saccharomyces cerevisiae in starvation.

2. Model and assumptions

Fig. 1 illustrates the model of cell growth with nutrient delivery

control and cell autophagy studied in this paper. Consider cells cul-

tured in a container with fixed volume V (unit l). The cells are classified

into normal phase (population x, cells/l) or autophagy phase (popu-

lation y, cells/l). Normal phase cells can renew with a rate λ1 (h−1),

and enter the autophagy phase with a rate k1 (h−1) in low nutrient

level. The cells undergoing autophagy can get back to normal phase

with a rate of k2 (h−1). Normal and autophagic cells are lost randomly

(for example, through apoptosis or autophagic cell death) at a rate

δ1 and δ2 (h−1), respectively. Here we omit the proliferation of au-

tophagic cells since growth arrest is often seen in cells undergoing au-
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Fig. 1. Illustration of the cell culture model. Red squares represent nutrients, cyanic and

brown circles represent normal and autophagic cells respectively. When the nutrient

is sufficient, normal cells proliferate with intrinsic rate λ1. Normal cells can turn into

autophagic cells with a rate k1 when nutrient is deficient. Autophagy is a reversible

process so that autophagic cells can get back to their normal phase with a rate k2 when

the nutrient level restores. Normal and autophagic cells are removed randomly with

rates δ1 and δ2, respectively. Dashed lines show nutrient fluxes. Nutrients are added

and discharged respectively with rates λ3z0 and λ3. Each cell consumes nutrient in a

rate k3, and each autophagic cell produces nutrient in a net production rate of a3 per

unit time. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

tophagy [24,25]. Each cell consumes an amount k3 (mM/(h × cell)) of

nutrients per unit time. Meanwhile, each autophagic cell sup-

plies nutrients (a3, mM/(h × cell)) for cell consumption through the

monomeric units generated by autophagy. The rates λ1, k1, k2, k3, a3

are dependent on the average nutrients concentration per cell. Au-

tophagy is known to affect cell death in a complicated way. Low level

autophagy can promote cell survival, while excessive autophagy can

induce type II programmed cell death [7]. For the simplicity, we as-

sume that δ2 depends on the ratio of autophagic cells. The nutrient

solutions are pumped in and out with the same flux V0 (l/h) so that

the solution volume remains unchanged in our model.

Letting z (mM/l) be the concentration of nutrients in the con-

tainer, z0(t) (mM/l) the nutrient concentration in the input flux,

λ3(t) = V0(t)/V (h−1) the rate of nutrient loss by the output flux (di-

lution rate), r = y/(x + y) the ratio of autophagic cells in the whole

population, and w = z/(x + y) (mM/cell) the average nutrients per

cell, the dynamics of cell populations and nutrient concentration can

be modeled by the following modified logistic model equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= λ1(w)

(
1 − x + y

M

)
x − k1(w)x + k2(w)y − δ1x

dy

dt
= k1(w)x − k2(w)y − δ2(r)y

dz

dt
= λ3(t)(z0(t)− z)− k3(w)(x + y)+ a3(w)y

w = z

x + y
, r = y

x + y
.

(1)

Here M gives the saturation level of the cell population and is assumed

to be a constant (depending on the volume V). In Eq. (1), the time

dependent concentration z0 and flux λ3 are used to represent the

controls in nutrient delivery.

Biologically, all parameters are positive, and the rate functions

λ1(w), k1(w), k2(w), k3(w), a3(w), δ2(r) are nonnegative and bounded

for all w ∈ R
+, r ∈ [0, 1]. We assume further that these functions are

of first order derivable for the convenience of analysis below. Thus,

we have the basic assumptions below:

(A0): Basic assumptions: The rate constants/functions satisfy

δ1, M > 0, λ3(t), z0(t) ≥ 0, ∀t (2)

and there exits C < +∞ so that

λ1(w), k1(w), k2(w), k3(w), a3(w) ∈ C1(R+, [0, C]) (3)

and

δ2(r) ∈ C1([0, 1], (0, C]) (4)

Additional we assume the following properties for the rate functions:

(A1): The renewal rate of normal cells increases with the average

nutrient level. Moreover, the renewal rate is smaller than the

apoptosis rate δ1 in the absence of nutrient, and larger than δ1

when the nutrient is sufficient. Mathematically we have

λ′
1(w) ≥ 0 (5)

and

λ1(0) < δ1 < lim
w→+∞ λ1(w). (6)

(A2): The transition rate of cells from normal to autophagy phase

decreases with the increasing of average nutrient level, and

no cell will undergo autophagy when the nutrient is sufficient.

Hence,

k′
1(w) ≤ 0, lim

w→+∞ k1(w) = 0. (7)

(A3): The transition rate of cells from autophagy to normal phase

increases with the average nutrient level, i.e.,

k′
2(w) ≥ 0. (8)
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