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In this paper, we study the role of autophagy in yeast cell population dynamics in response to starvation by a
mathematical model based on the logistic growth model. We analytically study the boundedness of solutions,
and the existence and stability of equilibrium states under general biologically acceptable assumptions.
Finally, we perform numerical studies for Saccharomyces cerevisiae response to starvation with autophagy.
The results show that autophagy is valuable in maintaining cell population in starvation, and attenuating

MSC: population fluctuations in response to perturbations in environmental nutrients. Furthermore, we show that
34D05 proper level autophagy promotes cell survival through the inhibition of cell death by autophagy as well as
92C37 the secretion of nutrients from autophagic cells, however excessive autophagy can decrease cell population
92D25 due to autophagic cell death.
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1. Introduction

The word autophagy was first introduced by de Duve in 1963
which means “self-eating” in Greek [1]. Biologically, autophagy is
a highly conserved catabolic process in which cells eat their own
cytoplasmic components to promote survival. During autophagy, cy-
toplasmic components including long lived proteins, cytoplasm and
organelles are delivered to lysosome (vacuole in plants or yeasts) for
degradation, and monomeric units (such as amino acids) from the
degraded macromolecules are transported back to cytosol for reuse
[1-3]. Autophagy is classified into three types according to the way of
how cargo is transported to lysosome (or vacuole): macroautophagy,
microautophagy and chaperone-mediated autophagy [2,4]. Among
which macroautophagy that is characterized by double-membrane
vesicular structures (autophagosomes) is the major type of autophagy
[3]. Hereafter we always refer macroautophagy as autophagy [5,2,6].
Autophagy is maintained at a basal level in normal niche, and can
be highly induced by starvation or other stresses in order to support
metabolism and cell survival [2,3,6]. Autophagy is not only an im-
portant way of degradation for removing stable proteins, but also a
powerful mechanism for stress response. Nevertheless, excessive au-
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tophagy can promote cell death that is called type Il programmed cell
death [7,8]. Autophagic dysfunctions associate with many diseases
including neurodegradation, liver disease, heart disease, myopathies
and various types of cancers [4,9,10]. Autophagy has been getting
more and more attentions in recent years.

Autophagy is a way of cytoprotection during nutrient depletion
by generating endogenous metabolites that are necessary to main-
tain cell viability [11], and thus plays important roles in maintaining
cell population in many situations from mammalian tissue growth
to cell culture. Autophagy is crucial for tumor growth. In the cen-
tral part of a tumor, autophagy can result in adaptive response for
cancer cells survival and tumor growth when energy limitation and
insufficient blood-supply that fail to provide necessary metabolic re-
sources for maintaining cell cycles [3]. Autophagy inhibition is known
to be able to induce tumor cells death in mouse models [12]. In ex-
periments, starvations of amino acids or nitrogen are often used to
induce autophagy in mammalian or yeast cells [3]. Cells with normal
autophagy show robust population maintenance during starvation,
while impaired autophagy sensitizes cells to starvation-induced cell
death and thus results in a population loss in culture cells [13,14].

It has been a long history for the study of cell population dynam-
ics. Many models have been established and well studied to explain
various cell growth curves under different conditions. Among these
models, the logistic type models, first established by Verhulst in 1838
[15], is a basic paradigm in population ecology [16,17]. The logistic
model is a reasonable approximation of growth behavior in many sit-
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uations and is qualitatively correctin that it captures the phenomenon
of exponential growth at low population levels and saturation in the
case of high population levels. Many biological systems, such as yeast
growth, herding behavior of African elephants and population growth
for Peruvian anchovies, can be well described by the logistic curve
[18-20]. The classical logistic model has been widely developed and
various form models were proposed, including the new model with
low growth rate during a lag phase [21], the bi-logistic growth model
for two phases growth cells [22], and diffusive model for species trans-
portation [23], etc. However, to the best of our knowledge, the logistic
type models are not developed to include cell autophagy response
to nutrient limitation. In the starvation, cells undergoing autophagy
can produce nutrient resources to supply the survival of other cells.
Hence autophagy introduces a feedback to the nutrients supplement,
and can add novel features to the logistic model.

In this paper, we consider a logistic type model including dynamic
nutrients supplement and cell autophagy to study cell population
dynamics in response to starvation. We analytically study the mathe-
matical aspects of the model, including the boundedness of solutions,
existence and stability of equilibrium states under biologically ac-
ceptable assumptions. Finally, we perform numerical simulations to
examine the roles of autophagy and compare our results with exper-
iments of Saccharomyces cerevisiae in starvation.

2. Model and assumptions

Fig. 1 illustrates the model of cell growth with nutrient delivery
control and cell autophagy studied in this paper. Consider cells cul-
tured in a container with fixed volume V (unit1). The cells are classified
into normal phase (population x, cells/1) or autophagy phase (popu-
lation y, cells/1). Normal phase cells can renew with a rate A1 (h™1),
and enter the autophagy phase with a rate k; (h~!) in low nutrient
level. The cells undergoing autophagy can get back to normal phase
with a rate of ky (h~1). Normal and autophagic cells are lost randomly
(for example, through apoptosis or autophagic cell death) at a rate
81 and 8, (h~1), respectively. Here we omit the proliferation of au-
tophagic cells since growth arrest is often seen in cells undergoing au-
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Fig.1. Illustration of the cell culture model. Red squares represent nutrients, cyanic and
brown circles represent normal and autophagic cells respectively. When the nutrient
is sufficient, normal cells proliferate with intrinsic rate A;. Normal cells can turn into
autophagic cells with a rate k; when nutrient is deficient. Autophagy is a reversible
process so that autophagic cells can get back to their normal phase with a rate k, when
the nutrient level restores. Normal and autophagic cells are removed randomly with
rates §; and &, respectively. Dashed lines show nutrient fluxes. Nutrients are added
and discharged respectively with rates As3zp and As. Each cell consumes nutrient in a
rate k3, and each autophagic cell produces nutrient in a net production rate of a; per
unit time. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

tophagy [24,25]. Each cell consumes an amount k3 (mM/ (h x cell)) of
nutrients per unit time. Meanwhile, each autophagic cell sup-
plies nutrients (a3, mM/(h x cell)) for cell consumption through the
monomeric units generated by autophagy. The rates A1, k1, ka, k3, as
are dependent on the average nutrients concentration per cell. Au-
tophagy is known to affect cell death in a complicated way. Low level
autophagy can promote cell survival, while excessive autophagy can
induce type II programmed cell death [7]. For the simplicity, we as-
sume that §, depends on the ratio of autophagic cells. The nutrient
solutions are pumped in and out with the same flux V; (I/h) so that
the solution volume remains unchanged in our model.

Letting z (mM/1) be the concentration of nutrients in the con-
tainer, zo(t) (mM/l) the nutrient concentration in the input flux,
A3(t) = Vo(t)/V (h~1) the rate of nutrient loss by the output flux (di-
lution rate), r = y/(x +y) the ratio of autophagic cells in the whole
population, and w = z/(x +y) (mM/cell) the average nutrients per
cell, the dynamics of cell populations and nutrient concentration can
be modeled by the following modified logistic model equations
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Here M gives the saturation level of the cell population and is assumed
to be a constant (depending on the volume V). In Eq. (1), the time
dependent concentration zg and flux A3 are used to represent the
controls in nutrient delivery.

Biologically, all parameters are positive, and the rate functions
A1(w), k1 (w), ko (W), k3 (W), az(w), 82 (r) are nonnegative and bounded
forallw e R*, r € [0, 1]. We assume further that these functions are
of first order derivable for the convenience of analysis below. Thus,
we have the basic assumptions below:

(A0): Basic assumptions: The rate constants/functions satisfy

81, M >0, As(t),zo(t)>0, Vt (2)
and there exits C < +oo so that

A (W), ki (w), ko (W), ks(w), as(w) € C'(R*, [0, C]) (3)
and

82(r) e C'([0,1], (0,C)) (4)

Additional we assume the following properties for the rate functions:

(A1): The renewal rate of normal cells increases with the average
nutrient level. Moreover, the renewal rate is smaller than the
apoptosis rate §; in the absence of nutrient, and larger than §;
when the nutrient is sufficient. Mathematically we have

Miw) =0 (5)
and
11(0) <8 < lim 1w, (6)

(A2): The transition rate of cells from normal to autophagy phase
decreases with the increasing of average nutrient level, and
no cell will undergo autophagy when the nutrient is sufficient.
Hence,

ky(w) <0, Wlil‘P ki(w) =0. (7)
(A3): The transition rate of cells from autophagy to normal phase

increases with the average nutrient level, i.e.,

ky(w) > 0. (8)
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