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a b s t r a c t

The study of population growth reveals that the behaviors that follow the power law appear in numerous

biological, demographical, ecological, physical and other contexts. Parabolic models appear to be realistic

approximations of real-life replicator systems, while hyperbolic models were successfully applied to problems

of global demography and appear relevant in quasispecies and hypercycle modeling. Nevertheless, it is not

always clear why non-exponential growth is observed empirically and what possible origins of the non-

exponential models are.

In this paper the power equation is considered within the frameworks of inhomogeneous population models;

it is proven that any power equation describes the total population size of a frequency-dependent model

with Gamma-distributed Malthusian parameter. Additionally, any super-exponential equation describes the

dynamics of inhomogeneous Malthusian density-dependent population model. All statistical characteristics

of the underlying inhomogeneous models are computed explicitly. The results of this analysis show that pop-

ulation heterogeneity can be a reasonable explanation for power law accurately describing total population

growth.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of population growth reveals that the behaviors that

follow the power law appear in numerous biological, demographical,

ecological and other contexts. In its simplest form, the power equation

for population growth generalizes the standard Malthusian equation

and has the form

dx

dt
= kxp (1.1)

Three cases are distinguished: the exponential with p = 1, the

super-exponential (hyperbolic) with p > 1 and the sub-exponential

(parabolic) with p < 1. Certainly, such simple model can describe a

real system only approximately; nevertheless, both sub- and super-

exponential growth can be observed in real populations in large do-

mains of values of model variables and parameters.

Well established examples of super-exponential growth apply to

global demography [1,2] and some ecological and economic problems

[3,4]. Relevance of super-exponential growth model was discussed

by Eigen and Schuster ([5], p. 426), who noticed that the quasispecies

model can exhibit hyperbolic growth if the growth rate is not a con-

stant but a linear function of the quasispecies concentration.

The most striking peculiarity of the solution to the super-

exponential equation is that it has “finite-time singularity”. Indeed,
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the solution to Eq. (1.1) at p > 1 reads

x(t) ∼ 1/(T − t)
1

(p−1)

(see Theorem 3 below for details). Hence, x (t) tends to infinity when

t approaches the critical time T < ∞, which is determined by initial

conditions for (1.1). It is worth noticing that “singularities do not exist

in natural and social systems, but the singularities of our approximate

mathematical models are usually very good diagnostic of the change

of regimes that occur in these systems” [3].

Sub-exponential growth models also have a long (although some-

times “implicit”) history. Schmalhausen [6,7] suggested the following

formula to describe the growth for any measurable parameter W of

a biological object (such as weight or size of an organism or separate

organ):

ln W ∼= c + b ln t (1.2)

where b, c are constants, t is the time (or age). This dependence cor-

responds to the power function

W

W0
=

(
t

t0

)b

(1.3)

and to the equation

dW

dt
= b

t
W. (1.4)

Excluding time from (1.4) using (1.3), we obtain

dW

dt
= bW

1/b
0 W1−1/b ∼ W1−1/b (1.5)
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Hence, the Schmalhausen formula has the form of the sub-

exponential equation (1.1). The growth coefficient in (1.4) is inversely

proportional to time; it is the simplest and universal (but not unique

and not always acceptable) explanation of the phenomenon of sub-

exponential growth.

Formula (1.3) is closely connected with the allometric principle,

which postulates a stable relationship between different character-

istics x and y of an organism during ontogenesis in the form of the

power dependence:

y = αxβ . (1.6)

Indeed, if some characteristics of an organism grow according to

the formula (1.3) with different b, then excluding time we obtain

Eq. (1.6). Allometric relationships allow for the possibility of calcu-

lating the mass or volume of organs that are inaccessible for direct

measurement, using available data for other organs.

Several interesting attempts were made to substantiate the prin-

ciple of allometry theoretically. It was shown that allometric rela-

tionships (and hence the Schmalhausen formula and sub-exponential

equation) are connected with the self-similarity property and the di-

mensional theory (see, e.g., [8] for applications to models of plant

growth).

Eq. (1.2) describes quite well only separate stages of organism de-

velopment; arbitrary stages of development correspond to different

values of the constants. As a result, the Schmalhausen generalized

growth formula was rewritten as

ln Wi = ci + bi ln t or Wi = cit
bi (1.7)

if Ti ≤ t < Ti+1 where ci, bi are constants, i = 1, . . . s; typically s = 3.

It was found that unusual wealth of experimental data on the devel-

opment of quite different biological objects might be approximately

described by the generalized Schmalhausen formula [7,9,10]. The un-

derlying model, which implies the generalized Schmalhausen formula

(1.7) was suggested and studied in [10,11].

The same relations (1.7) were found when studying the develop-

ment not only of individuals, but also of populations and communities.

A well-known example is the “3/2 power rule” of plant self-thinning

and its modifications ([12,13], etc.). Part of the monograph [14] was

devoted to systematic applications of formula (1.7) to different char-

acteristics of tree populations and forest communities, such as dy-

namics of an average diameter of trees, wood stock, etc. Thus it seems

that the Schmalhausen formula of sub-exponential growth may be

considered as an essential empirical law of developmental biology.

More recent well-known example of sub-exponential population

growth applies to some molecular replicator systems. Von Kiedrowski

[15] realized that populations of most experimentally studied artifi-

cial replicators (typically, oligonucleotides that replicate in vitro via

binary ligation) grow approximately according to the parabolic law

(Eq. (1.1) with p = 1/2) rather than exponentially [16–18]. The princi-

ple cause of the sub-exponential growth of these populations appears

to be product inhibition, which slows down the reproduction process,

compared to the exponential case [16,18,19].

Based on these results, Szathmary and Smith [20] presented a gen-

eral conceptual model of prebiological evolution of replicators using

the power equation (1.1) to describe the concentration of molecules.

The models of biological populations composed of non-

exponential homogeneous or monomorphic subpopulations (clones)

deviate from Darwinian “survival of the fittest”, see [21–25]. Specif-

ically, the models imply “differential survival of the fittest” as p = 1,

“survival of the common” as p > 1, and “survival of everybody” as

p < 1.

The reason is that non-exponential clones possess some unrealistic

properties. The birth rate per individual in model (1.1) is r = kxp−1.

Then, the birth rate for parabolic model increases indefinitely as the

population size decreases and tends to zero. It can be easily shown that

the birth rate for hyperbolic models increases as the population size

increases, and both become infinite at a finite time moment. Recall

that the birth rate per individual must be bounded for any realistic

biological population.

Nevertheless, despite these unrealistic peculiarities of the sim-

plified growth equation (1.1), power law growth appears to be an

essential feature of evolving populations that could be even more

directly relevant for biological and prebiological evolution than the

exponential growth case. Therefore, understanding the laws gov-

erning this type of growth is of potential interest for evolutionary

studies.

The question arises: what are the possible origins of the non-

exponential models and how can we derive them from realistic as-

sumptions? The last problem appears non-trivial because both sub-

and super exponential models possess some unrealistic properties

described above. To eliminate these peculiarities we need to know

where they come from.

The starting point is that heterogeneity is one of the key proper-

ties of any real evolving biological system. I show here that model

(1.1) can be understood within the frameworks of inhomogeneous

population models, and that population heterogeneity can be a rea-

sonable explanation for these growth laws of the total population

size.

2. Inhomogeneous or polymorphic population models

Heterogeneity amounts to the existence of differences between

individuals that could be subject to natural selection and drift which

can operate only if the population is non-homogeneous. The dy-

namics of distributions of individuals within heterogeneous popu-

lations can be described by replicator equations which capture the

”basic tenet of Darwinism” [26,27]. A very high or even infinite sys-

tem dimensionality is one of the principal difficulties in the study of

replicator equations. An effective method for solving a wide class

of RE based on the reduction theorem has been recently devel-

oped and applied to some well-known and new problems concern-

ing the dynamics of heterogeneous populations and communities

[28,29].

For completeness, the main results of the general theory of in-

homogeneous population models [28,30] are given here for a par-

ticular case of the model, which is sufficient for our purposes. Con-

sider an inhomogeneous population composed of individuals with

different Malthusian parameters a; we refer to the set of all indi-

viduals having given value of the parameter a as an a-clone and let

l (t, a) be the size of a-clone at the moment t. We assume that the

growth rate of the population may depend on its total size N (t).
Dynamics of such a population can be described by the following

model:

dl(t, a)

dt
= al(t, a)g(N), N(t) =

∫
A

l(t, a)da (2.1)

where g (N) is an appropriate function.

Denote P (t, a) = l (t, a)/N (t) to be the current frequency of a given

value of the parameter a; the probability density function (pdf) P (t, a)
describes the distribution of the parameter a along the population in t

moment. We suppose that the initial pdf of the Malthusian parameter

a, P
(
0, a

)
, is given, and its moment generating function (mgf) M0(λ) =∫

A exp(λa)P(0, a)da is known.

In order to solve the problem (2.1), let us define formally the “key-

stone” auxiliary variable q (t) as the solution to the Cauchy problem

dq

dt
= g(N), q(0) = 0. (2.2)

This equation cannot be solved at this moment, because the pop-

ulation size N (t) is unknown. However, the clone densities and pop-

ulation size can be expressed with the help of the keystone variable
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