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The study of population growth reveals that the behaviors that follow the power law appear in numerous
biological, demographical, ecological, physical and other contexts. Parabolic models appear to be realistic
approximations of real-life replicator systems, while hyperbolic models were successfully applied to problems
of global demography and appear relevant in quasispecies and hypercycle modeling. Nevertheless, it is not
always clear why non-exponential growth is observed empirically and what possible origins of the non-
exponential models are.
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In this paper the power equation is considered within the frameworks of inhomogeneous population models;
it is proven that any power equation describes the total population size of a frequency-dependent model
with Gamma-distributed Malthusian parameter. Additionally, any super-exponential equation describes the
dynamics of inhomogeneous Malthusian density-dependent population model. All statistical characteristics
of the underlying inhomogeneous models are computed explicitly. The results of this analysis show that pop-
ulation heterogeneity can be a reasonable explanation for power law accurately describing total population
growth.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of population growth reveals that the behaviors that
follow the power law appear in numerous biological, demographical,
ecological and other contexts. In its simplest form, the power equation
for population growth generalizes the standard Malthusian equation
and has the form

dx »
&= kex (1.1)

Three cases are distinguished: the exponential with p =1, the
super-exponential (hyperbolic) with p > 1 and the sub-exponential
(parabolic) with p < 1. Certainly, such simple model can describe a
real system only approximately; nevertheless, both sub- and super-
exponential growth can be observed in real populations in large do-
mains of values of model variables and parameters.

Well established examples of super-exponential growth apply to
global demography [1,2] and some ecological and economic problems
[3,4]. Relevance of super-exponential growth model was discussed
by Eigen and Schuster (5], p. 426), who noticed that the quasispecies
model can exhibit hyperbolic growth if the growth rate is not a con-
stant but a linear function of the quasispecies concentration.

The most striking peculiarity of the solution to the super-
exponential equation is that it has “finite-time singularity”. Indeed,
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the solution to Eq. (1.1) at p > 1 reads
x(t) ~ 1/(T — )0

(see Theorem 3 below for details). Hence, x (t) tends to infinity when
t approaches the critical time T < oo, which is determined by initial
conditions for (1.1). It is worth noticing that “singularities do not exist
in natural and social systems, but the singularities of our approximate
mathematical models are usually very good diagnostic of the change
of regimes that occur in these systems” [3].

Sub-exponential growth models also have a long (although some-
times “implicit”) history. Schmalhausen [6,7] suggested the following
formula to describe the growth for any measurable parameter W of
a biological object (such as weight or size of an organism or separate
organ):

InW=c+blint (1.2)

where b, c are constants, t is the time (or age). This dependence cor-
responds to the power function

w t\°

— == 1.

Wo (fo> (13)

and to the equation

dw b

@It (14)
Excluding time from (1.4) using (1.3), we obtain

dw _ 1/byas1-1/b 1-1/b

a = bw,”"w w (1.5)
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Hence, the Schmalhausen formula has the form of the sub-
exponential equation (1.1). The growth coefficient in (1.4) is inversely
proportional to time; it is the simplest and universal (but not unique
and not always acceptable) explanation of the phenomenon of sub-
exponential growth.

Formula (1.3) is closely connected with the allometric principle,
which postulates a stable relationship between different character-
istics x and y of an organism during ontogenesis in the form of the
power dependence:

y=axb. (1.6)

Indeed, if some characteristics of an organism grow according to
the formula (1.3) with different b, then excluding time we obtain
Eq. (1.6). Allometric relationships allow for the possibility of calcu-
lating the mass or volume of organs that are inaccessible for direct
measurement, using available data for other organs.

Several interesting attempts were made to substantiate the prin-
ciple of allometry theoretically. It was shown that allometric rela-
tionships (and hence the Schmalhausen formula and sub-exponential
equation) are connected with the self-similarity property and the di-
mensional theory (see, e.g., [8] for applications to models of plant
growth).

Eq. (1.2) describes quite well only separate stages of organism de-
velopment; arbitrary stages of development correspond to different
values of the constants. As a result, the Schmalhausen generalized
growth formula was rewritten as

InW;=ci+bjlnt or W;=cth (1.7)

if T; <t < T;;1 where ¢;, b; are constants, i = 1, ...s; typically s = 3.
It was found that unusual wealth of experimental data on the devel-
opment of quite different biological objects might be approximately
described by the generalized Schmalhausen formula [7,9,10]. The un-
derlying model, which implies the generalized Schmalhausen formula
(1.7) was suggested and studied in [10,11].

The same relations (1.7) were found when studying the develop-
ment not only of individuals, but also of populations and communities.
A well-known example is the “3/2 power rule” of plant self-thinning
and its modifications ([12,13], etc.). Part of the monograph [14] was
devoted to systematic applications of formula (1.7) to different char-
acteristics of tree populations and forest communities, such as dy-
namics of an average diameter of trees, wood stock, etc. Thus it seems
that the Schmalhausen formula of sub-exponential growth may be
considered as an essential empirical law of developmental biology.

More recent well-known example of sub-exponential population
growth applies to some molecular replicator systems. Von Kiedrowski
[15] realized that populations of most experimentally studied artifi-
cial replicators (typically, oligonucleotides that replicate in vitro via
binary ligation) grow approximately according to the parabolic law
(Eq.(1.1) with p = 1/2) rather than exponentially [16-18]. The princi-
ple cause of the sub-exponential growth of these populations appears
to be product inhibition, which slows down the reproduction process,
compared to the exponential case [16,18,19].

Based on these results, Szathmary and Smith [20] presented a gen-
eral conceptual model of prebiological evolution of replicators using
the power equation (1.1) to describe the concentration of molecules.

The models of biological populations composed of non-
exponential homogeneous or monomorphic subpopulations (clones)
deviate from Darwinian “survival of the fittest”, see [21-25]. Specif-
ically, the models imply “differential survival of the fittest” as p =1,
“survival of the common” as p > 1, and “survival of everybody” as
p<1.

The reasonis that non-exponential clones possess some unrealistic
properties. The birth rate per individual in model (1.1) is r = kxP~1.
Then, the birth rate for parabolic model increases indefinitely as the
population size decreases and tends to zero. It can be easily shown that
the birth rate for hyperbolic models increases as the population size

increases, and both become infinite at a finite time moment. Recall
that the birth rate per individual must be bounded for any realistic
biological population.

Nevertheless, despite these unrealistic peculiarities of the sim-
plified growth equation (1.1), power law growth appears to be an
essential feature of evolving populations that could be even more
directly relevant for biological and prebiological evolution than the
exponential growth case. Therefore, understanding the laws gov-
erning this type of growth is of potential interest for evolutionary
studies.

The question arises: what are the possible origins of the non-
exponential models and how can we derive them from realistic as-
sumptions? The last problem appears non-trivial because both sub-
and super exponential models possess some unrealistic properties
described above. To eliminate these peculiarities we need to know
where they come from.

The starting point is that heterogeneity is one of the key proper-
ties of any real evolving biological system. [ show here that model
(1.1) can be understood within the frameworks of inhomogeneous
population models, and that population heterogeneity can be a rea-
sonable explanation for these growth laws of the total population
size.

2. Inhomogeneous or polymorphic population models

Heterogeneity amounts to the existence of differences between
individuals that could be subject to natural selection and drift which
can operate only if the population is non-homogeneous. The dy-
namics of distributions of individuals within heterogeneous popu-
lations can be described by replicator equations which capture the
"basic tenet of Darwinism” [26,27]. A very high or even infinite sys-
tem dimensionality is one of the principal difficulties in the study of
replicator equations. An effective method for solving a wide class
of RE based on the reduction theorem has been recently devel-
oped and applied to some well-known and new problems concern-
ing the dynamics of heterogeneous populations and communities
[28,29].

For completeness, the main results of the general theory of in-
homogeneous population models [28,30] are given here for a par-
ticular case of the model, which is sufficient for our purposes. Con-
sider an inhomogeneous population composed of individuals with
different Malthusian parameters a; we refer to the set of all indi-
viduals having given value of the parameter a as an a-clone and let
[(t, a) be the size of a-clone at the moment t. We assume that the
growth rate of the population may depend on its total size N (t).
Dynamics of such a population can be described by the following
model:

‘”g’t“) —dl(t,a)g(N), N(b) = /A I(t, a)da 2.1)

where g (N) is an appropriate function.

Denote P (t, a) = [ (t, a) /N (t) to be the current frequency of a given
value of the parameter a; the probability density function (pdf) P (t, a)
describes the distribution of the parameter a along the population in t
moment. We suppose that the initial pdf of the Malthusian parameter
a,P (0, a), is given, and its moment generating function (mgf) Mo(A) =
J4 exp(Aa)P(0, a) da is known.

In order to solve the problem (2.1), let us define formally the “key-
stone” auxiliary variable q (t) as the solution to the Cauchy problem

da _ g(N),

i q0)=0. (2.2)

This equation cannot be solved at this moment, because the pop-
ulation size N (t) is unknown. However, the clone densities and pop-
ulation size can be expressed with the help of the keystone variable
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