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a b s t r a c t

We show that disease transmission models in a spatially heterogeneous environment can have a large number

of coexisting endemic equilibria. A general compartmental model is considered to describe the spread of an

infectious disease in a population distributed over several patches. For disconnected regions, many boundary

equilibria may exist with mixed disease free and endemic components, but these steady states usually

disappear in the presence of spatial dispersal. However, if backward bifurcations can occur in the regions,

some partially endemic equilibria of the disconnected system move into the interior of the nonnegative cone

and persist with the introduction of mobility between the patches. We provide a mathematical procedure that

precisely describes in terms of the local reproduction numbers and the connectivity network of the patches,

whether a steady state of the disconnected system is preserved or ceases to exist for low volumes of travel.

Our results are illustrated on a patchy HIV transmission model with subthreshold endemic equilibria and

backward bifurcation. We demonstrate the rich dynamical behavior (i.e., creation and destruction of steady

states) and the presence of multiple stable endemic equilibria for various connection networks.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Compartmental epidemic models have been considered widely in

the mathematical literature since the pioneering works of Kermack,

McKendrick and many others. Investigating fundamental properties

of the models with analytical tools allows us to get insight into the

spread and control of the disease, by gaining information about the

solutions of the corresponding system of differential equations. De-

termining steady states of the system and knowing their stability is

of particular interest if one thinks of the long term behavior of the

solution as final epidemic outcome.

In most deterministic models for communicable diseases, there

are two types of steady states: one is disease free, meaning that the

disease is not present in the population, and the other one is en-

demic, when the infection persists with a positive state in some of

the infected compartments. In such situation, the basic reproduction

number (R0) usually works as a threshold for the stability of fixed

points. Typically, the disease free equilibrium is locally asymptotically

stable whenever this quantity—defined as the number of secondary

cases generated by an index infected individual who was introduced

into a completely susceptible population—is less than unity, and for
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values of R0 greater than one, the endemic fixed point emerging

at R0 = 1 takes stability over by making the disease free state un-

stable. This phenomenon, known as forward bifurcation at R0 = 1,

is in contrary to some other cases when more than two equilibria

coexist in certain parameter regions. Backward bifurcation presents

such a scenario, when there is an interval for values of R0 to the left

of one where there is a stable and an unstable endemic fixed point

besides the unique disease free equilibrium. Such dynamical struc-

ture of fixed points has been observed in several biological models

considering multiple groups with asymmetry between groups and

multiple interaction mechanisms (for an overview see, for instance,

Gumel [8] and the references therein). However, examples can also

be found in the literature where the coexistence of multiple non-

trivial steady states is not due to backward transcritical bifurcation

of the disease free equilibrium: in the age-structured SIR model ana-

lyzed by Franceschetti et al. [6] endemic equilibria arise through two

saddle-node bifurcations of a positive fixed point, moreover Wang

[17] found backward bifurcation from an endemic equilibrium in a

simple SIR model with treatment.

In case of forward transcritical bifurcation, the classical disease

control policy can be formulated. The stability of the endemic state is

typically accompanied with the persistence of the disease in the pop-

ulation as long as the reproduction number is larger than one, and

controlling the epidemic in a way such that R0 decreases below one

successfully eliminates the infection, since every solution converges
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to the disease free equilibrium when R0 < 1. On the other hand,

the presence of backward bifurcation with a stable non-trivial fixed

point forR0 < 1 means that bringing the reproduction number below

one is only necessary but not sufficient for disease eradication. Nev-

ertheless, multiple endemic equilibria have further epidemiological

implications, namely that stability and global behavior of the models

that exhibit such structure are often not easy to analyze, henceforth

little can be known about the final outcome of the epidemic.

Multi-city epidemic models, where the population is distributed in

space over several discrete geographical regions with the possibility

of individuals’ mobility between them, provide another example for

rich dynamics. In the special case when the cities are disconnected,

the model possesses a large number of steady states (i.e., the product

of the numbers of equilibria in the one-patch models corresponding

to each city). However, the introduction of traveling has a signifi-

cant impact on steady states, as it often causes substantial technical

difficulties in the fixed point analysis and, more importantly, makes

certain equilibria disappear. Some works in the literature deal with

models where the system with traveling exhibits only two steady

states, one disease free with the infection not present in any of the

regions, and another one, which exists only for R0 > 1, correspond-

ing to the situation when the disease is endemic in each region (see,

for instance, Arino [1], Arino and van den Driessche [2]). Other stud-

ies which consider the spatial dispersal of infecteds between regions

(Gao and Ruan [7], Wang and Zhao [18] and the references therein) do

not derive the exact number for the steady states, but show the global

stability of a single disease free fixed point for R0 < 1, and claim the

uniform persistence of the disease for R0 > 1 which implies the ex-

istence of at least one (componentwise) positive equilibrium.

The purpose of this study is to investigate the impact of individuals’

mobility on the number of equilibria in multiregional epidemic mod-

els. A general deterministic model is formulated to describe the spread

of infectious diseases with horizontal transmission. The framework

enables us to consider models with multiple susceptible, infected and

removed compartments, and more significantly, with several steady

states. The model can be extended to an arbitrary number of regions

connected by instantaneous travel, and we investigate how mobility

creates or destroys equilibria in the system. First we determine the

exact number of steady states for the model in disconnected regions,

then give a precise condition, in terms of the reproduction numbers

of the regions and the connecting network, for the persistence of

equilibria in the system with traveling. The possibilities for a three-

patch scenario with backward bifurcations (i.e., when two endemic

states are present for local reproduction numbers less than one) are

sketched in Fig. 1 (cf. Corollary 10).

The paper is organized as follows. A general class of compart-

mental epidemic models is presented in Section 2, including multi-

group, multistrain and stage progression models. We consider r

regions which are connected by means of movement between the

subpopulations, and use our setting as a model building block in each

region. Section 3 concerns with the unique disease free equilibrium

of the multiregional system with small volumes of mobility, while

in Sections 4–6 we consider the endemic steady states of the discon-

nected system, and specify conditions on the connection network and

the model equations for the persistence of fixed points in the system

with traveling. We close Sections 4–6 with corollaries that summarize

the achievements. The results are applied to a model for HIV trans-

mission in three regions with various types of connecting networks

in Section 7, then this model is used for the numerical simulations of

Section 8 to give insight into the interesting dynamics with multiple

stable endemic equilibria, caused by the possibility of traveling.

2. Model formulation

We consider an arbitrary (r) number of regions, and use upper

index to denote region i, i ∈ {1, . . . r}. Let xi ∈ Rn, yi ∈ Rm and zi ∈ Rk

(a) e1 = 2, e2 = 2, e3 = 1,
R1 < 1, R2 < 1, R3 > 1.

(b) e1 = 2, e2 = 1, e3 = 1,
R1 < 1, R2 > 1, R3 > 1.

(c) e1 = 1, e2 = 1, e3 = 1,
R1 > 1, R2 > 1, R3 > 1.

Fig. 1. We illustrate the behavior of steady states in the system of three regions con-

nected to each other by a complete mobility network, for three different cases in the

values of local reproduction numbers. Dots on the schematic diagrams depict infected

components of equilibria of the disconnected system, and ei denotes the number of

positive fixed points in region i, i = 1, 2, 3. Mobility has no impact on the disease

free equilibrium (orange dot). Componentwise positive steady states (blue dots) are

preserved in the system with traveling, as they continuously depend on the mobility

parameter α. A boundary endemic equilibrium moves out from the nonnegative octant

with the introduction of traveling if the equilibrium has a component corresponding

to a region, which is disease free in the absence of traveling and has local reproduction

number (R) greater than one (red dot). Other boundary steady states move into the

interior of the nonnegative octant (green dots). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

represent the set of infected, susceptible and removed (by means of

immunity or recovery) compartments, respectively, for n, m, k ∈ Z+.

The vectors xi, yi and zi are functions of time t. We assume that all

individuals are born susceptible, the continuous function gi(xi, yi, zi)
models recruitment and also death of susceptible members. It is as-

sumed that gi is r − 1 times continuously differentiable. The n × n

matrix −Vi describes the transitions between infected classes as well

as removals from infected states through death and recovery. It is

reasonable to assume that all non-diagonal entries of Vi are non-

positive, that is, Vi has the Z sign pattern [16]; moreover the sum of

the components of Viu should also be nonnegative for any u ≥ 0. It is

shown in [16] that such a matrix is a non-singular M-matrix, more-

over (Vi)−1 ≥ 0. Furthermore, we let Di be a k × k diagonal matrix

whose diagonal entries denote the removal rate in the corresponding

removed class.

Disease transmission is described by the m × n matrix func-

tion Bi(xi, yi, zi), assumed Cr−1 on Rn+ × (Rm+ \ {0})× Rk+, an

element β i
p,q(x

i, yi, zi) represents transmission between the pth
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