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26An equation of motion, derived from the fractal analysis of the Brownian particle trajectory, makes it
27possible to calculate the time dependence of the mean square displacement for early times, before the
28Einstein formula becomes valid. The diffusion coefficient increases with the distance travelled which
29can be restricted by the geometrical conditions. The corresponding diffusion coefficient cannot increase
30further to achieve a value characteristic for unrestricted environment. Explicit formula is derived for
31confined diffusivity related to the unrestricted one as dependent on the maximum particle mean square
32displacement possible normalized by the square of its mean free path. The model describes the lipid and
33protein diffusion in tubular membranes with different radii, originally fitted by the modified Saffman–
34Delbrück equation, and the lateral mobility of synthetic model peptides for which the diffusion coeffi-
35cient is inversely proportional to the radius of the diffusing object and to the thickness of the membrane.
36� 2014 Published by Elsevier Inc.
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40 1. Introduction

41 The mobility in biological membranes is described by the
42 Brownian motion although the diffusion coefficient is not deter-
43 mined by the Stokes–Einstein equation. The motion of the nano-
44 particles in biological systems is usually restricted to bounded
45 domains. Theoretical description of the Brownian motion in biolog-
46 ical membranes has been given by Saffman and Delbrück [1], who
47 predicted a logarithmic dependence of the protein diffusion coeffi-
48 cient on the inverse of the size of the protein and on the membrane
49 size if restricted.
50 The space restriction demands a more detailed analysis of the
51 motion of nanoparticles. At very short times the motion of a
52 Brownian particle is regarded as ballistic whereas for long times
53 the particle starts to behave according to Einstein‘s theory [2]. At
54 short distances the Einstein formula is still not valid and the mean
55 square displacement of the particle position is lower than would be
56 for fully developed diffusive motion at the same time. The lower
57 mean square displacement corresponds to the lower diffusion
58 coefficient for early stage of Brownian motion. First description
59 of this phenomenon was done by Langevin [3].
60 A solution to the corresponding equation was given by Uhlen-
61 beck and Ornstein [4] in the form
62

hx2i
2Dt
¼ 1� s

t
1� exp � t

s

� �� �
ð1Þ

6464

65This is a time dependence of the mean square displacement of the
66particle position in one dimension hx2i. The solution contains two
67parameters which are the diffusion coefficient D and the character-
68istic time s, being the momentum relaxation time, is calculated as
69the particle mean free path in one dimension divided by the corre-
70sponding mean velocity of the particle.
71

s ¼ kx=v0x ð2Þ 7373

74Regarding the functional form of the velocity autocorrelation
75function in respect to the Langevin equation, a fast exponential
76transition occurs from the ballistic to the diffusive region, in which
77the time dependence of the mean square displacement scales with
78the diffusion coefficient and the momentum relaxation time.
79Instead of an exponential decay, a long-tail proportional to t�3/2

80is postulated by Vladimirsky and Terletzky [5] and Hinch [6] for
81Brownian particle. This form of the velocity autocorrelation func-
82tion has the experimental confirmation given by Kim and Matta
83[7]. It is also confirmed by the fractal model of the Brownian par-
84ticle motion discussed in this paper.
85A moving particle follows the straight-line segments. At a very
86short time, when the movement can be considered as ballistic, the
87particle travels along the same segment with the fractal dimension
88equal to one. At a very long time the movement can be regarded as
89Brownian, along a trajectory with the fractal dimension equal to
90two due to evolution of fractal character of particle trajectory. It
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91 seems reasonable to describe the transition between the two using
92 the scale-dependent fractal dimension changing from one for small
93 scale (ballistic) to two for large ones (diffusive), as postulated by
94 Takayasu [8], who considered an isotropic Brownian motion of a
95 particle in three-dimensional space. The scale (s) dependent fractal
96 dimension for a random walk trajectory, given in a general form by
97 Bujan-Nuňez [9], reads98

DwðsÞ ¼ 2� 1
1þ s=kk

ð3Þ
100100

101 where k is a proportionality constant, being a fitting parameter, and
102 k is the particle mean free path. Accordingly, Dw(s) varies between 1
103 if s=kk! 0 and 2 if s=kk!1. The bigger the scale of observation,
104 the random motion is thus more close to the Brownian motion.
105 The trajectory length depends on the scale of observation
106 according to the fractal formula
107

d ln LðsÞ
d ln s

¼ 1� DwðsÞ ð4Þ109109

110 Integrating with Dw(s) given by Eq. (3)
111 Z LðrÞ

Lð0Þ

dL
L
¼
Z r

0
�

s
kk

1þ s
kk

ds
s

ð5Þ
113113

114 one gets the result described by Gmachowski [10]
115

r
Lð0Þ ¼

1
1þ r

kk

ð6Þ
117117

118 L(0) is the trajectory contour length equal to the product of the
119 mean velocity of the particle and time v0t. Hence
120

1
1þ r

kk

¼ r
v0t
¼ rs

kt
ð7Þ

122122

123 where the mean velocity of the particle is replaced by the mean free
124 path of diffusing particle divided by the characteristic momentum
125 relaxation time
126

v0 ¼ k=s ð8Þ128128

129 The obtained relation reads
130

r
k

kþ r
k

� �
¼ k

t
s

ð9Þ132132

133 Then replacing r by
ffiffiffiffiffiffiffiffi
hr2i

p
, the root of the mean square displacement

134 of the particle position in three dimensions, one gets the formula
135 describing the mean square displacement of the particle position
136 in three dimensions hr2i as dependent on the number of steps t/s
137

hr2i1=2

k
kþ hr

2i1=2

k

 !
¼ k

t
s

ð10Þ
139139

140 Substituting in Eq. (10)
141

hr2i ¼ 3hx2i ð11Þ
k ¼

ffiffiffi
3
p

kx ð12Þ143143

144one gets the formula describing the mean square displacement of
145the particle position in one dimension hx2i as dependent on the
146number of steps t/s
147

hx2i1=2

kx
kþ hx

2i1=2

kx

 !
¼ k

t
s ð13Þ

149149

150The derived equation describes a smooth crossover from ballistic to
151diffusive motion of a Brownian particle, which is essential during
152the initial stage of the particle motion. For very short times the for-
153mula takes the form characteristic for ballistic movement
154

hx2i1=2 ¼ kx
t
s
¼ v0xt ð14Þ 156156

157and for very long times
158

hx2i ¼ kk2
x

t
s
¼ kv0xkxt ð15Þ 160160

161Taking the unrestricted diffusion coefficient described by the
162kinetic theory, as dependent on the Brownian step parameters
163

D ¼ v0xkx ð16Þ 165165

166we get the agreement with the Einstein formula hx2i = 2Dt for the
167value of the fitting parameter k = 2. The final form of Eq. (13) reads
168

hx2i1=2

kx
2þ hx

2i1=2

kx

 !
¼ 2

t
s

ð17Þ
170170

171With Eqs (2) and (16) the formula can be rearranged to the form
172

hx2i
2Dt
þ hx

2i1=2

v0xt
¼ 1 ð18Þ 174174

175or after solving the quadratic Eq. (17)
176

hx2i
2Dt
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t=s

p
� 1

t=s
ð19Þ

178178

179The fractal model of the particle motion was utilized to formu-
180late [11] the aerosol collision kernel. The applicability of the model
181of the ballistic-diffusive transition seems to be much wilder, espe-
182cially to describe the diffusion in restricted environments.

1832. Model of confined Brownian movement

184Before formulation of the restricted diffusion problem, let us
185check the reliability of the derived formulae. Eq. (18), which is
186the sum of diffusive and ballistic contributions, describes the
187behavior of a Brownian particle for short (hx2i1/2 ? v0xt) and long
188(hx2i? 2Dt) times. It clearly indicates that the mean square dis-
189placement is less than its value for fully developed diffusive
190motion (hx2i < 2Dt). Huang et al. [12] investigated the full transi-
191tion from ballistic to diffusive Brownian motion of small particles
192in water, observing the behavior of a single particle in an optical
193trap. Experiments conducted make it possible to verify the model

Nomenclature

a radius of cylindrical particle (m)
CV normalized velocity autocorrelation function (–)
D diffusion coefficient (m2/s)
D<x2> diffusion coefficient in restricted space (m2/s)
h membrane height (m)
t time (s)
v0x mean velocity of the particle in one direction (m/s)

hx2i mean square displacement of the particle position in
one dimension (m2)

gb bulk fluid viscosity (kg m�1 s�1)
gm membrane viscosity (kg m�1 s�1)
kx particle mean free path in one dimension (m)
s particle momentum relaxation time (s)
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