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a b s t r a c t

In terms of their internal (genetic) and external (phenotypic) states, living cells are always changing at
varying rates. Periods of stable or low rate of change are often called States, Stages, or Phases, whereas
high-rate periods are called Transitions or Transients. While states and transitions are observed pheno-
typically, such as cell differentiation, cancer progression, for example, are related with gene expression
levels. On the other hand, stages of gene expression are definable based on changes of expression levels.
Analyzing relations between state changes of phenotypes and stage transitions of gene expression levels
is a general approach to elucidate mechanisms of life phenomena.

Herein, we propose an algorithm to detect stage transitions in a time series of expression levels of a
gene by defining statistically optimal division points. The algorithm shows detecting ability for simulated
datasets. An annotation based analysis on detecting results for a dataset of initial development of Caeno-
rhabditis elegans agrees with that are presented in the literature.
� 2014 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Internal (genetic) and external (phenotypic) states in living cells
are changing continuously. Rates of change are also changing.
Generally states of living cells are classifiable into two kinds: stable
states and transitions. Stable states are also designated as ‘stages’
or ‘phases’, and are found in many biological phenomena such as
individual development [1], cancer progression [2], fermentation
[3,4], and actions of individuals [5]. Reports on these studies show
that stages defined by phenotypic changes are related with
changes in gene expression levels. Therefore, defining stages based
on gene expression levels are presumably consistent with pheno-
typic stages.

Applications of statistical distribution models to gene expression
time series for stage analysis are described in many reports. For
example, determination of starting timing of gene expression [6],
identification of gene regulatory networks based on gene expres-
sion time series divided by given stage definitions [7], and compar-
ing plural division patterns of gene expression time series of cancer
cells [8] based on the Information Criterion [9] are recent works.
These methods are based on pre-defined stage information on time
series data. Stage information is based on observed phenotypic state
changes or general analyses of transitions in phenomena.

We here are interested in how to find stages statistically in a
time series of expression levels of a gene without any other infor-
mation. We expected that these statistically detected stages of a
gene agree with phenotypic states. Reports introduced above sug-
gest that existence of certain relationships between phenotypic
states and gene expression stage transitions. We think that gene
expression stages which are found without phenotypic informa-
tion possibly agree with phenotypic changes.

Generally, statistical tests necessitate the use of a large sample,
e.g., tests for normality of a distribution require 20–30 samples or
more for reliable conclusions [10]. Contrary to this, publicly avail-
able gene expression time series datasets often consist of a few
samples. Other statistical methods for stage transitions, ‘Change
point detection’ methods, present similar disadvantages. Methods
of this kind judge whether a new sample has come from the same
population of previously obtained samples. Therefore a sufficient
number of samples as previous samples are needed [11,12].

We propose a new algorithm to determine statistically optimal
division points on quantitative gene expression time series data
into stages. The algorithm is based on brute force search for all pos-
sible division patterns that consist of the number and the positions
of division points. For time series observations using DNA micro-
arrays, the algorithm can determine the stage transition points
for all each genes. Therefore, for each interval between sapling
time points, the number of genes that has a stage transition point
on the interval can be counted. State changes in a whole cell can be
regarded as a summary of all stage transitions of each gene.
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We measured the detection accuracy of our method through its
application to simulated datasets. Thus we applied our algorithm
to the gene expression dataset of initial development of Caenorhab-
ditis elegans where phenotypic states are defined clearly as phases
of the egg cleavage. Annotation-based analyses of statistically opti-
mal stages on gene expression levels show good agreement with
literal knowledge of phenotypic stages.

2. Material and methods

2.1. Assumptions on quantitative gene expression data

Our algorithm is based on several assumptions on quantitative
gene expression time series data, and we suppose that these data
are obtained by DNA microarray observations. The first is that a
time series of expression levels of a gene consists of one or more
stages. The second is that values of gene expression levels can be
modeled statistically by the normal distribution. This assumption
can be controversial because no model is established today for dis-
tributions of gene expression levels and the distribution do not
seem to normal in some cases [13,14]. Here we introduce the
assumption to demonstrate how the algorithm work. And a report
about log-normality of the distribution [15] supports this assump-
tion. The third assumption is that stages transit within an interval
between sampling time points.

2.2. Exhaustive search for division patterns of time series data

The algorithm searches the statistically optimal stages division
positions in quantitative time series data using an exhaustive pat-
tern search for all possible numbers and positions of stage divi-
sions. Input to the algorithm is a sequence of real numbers as a
time series of expression levels of a gene, and output is a ‘division
pattern,’ a set of optimal dividing positions on the series into
stages, namely the numbers and the positions of stage borders.
The information criterion value is calculated for each of all mathe-
matically possible division patterns based on the number of divi-
sion positions and the total likelihood values of statistical
distribution models those are fitted for each stage. Better fit with
fewer stages is evaluated better by the information criterion

(Fig. 1). The optimal division pattern is of the minimum informa-
tion criterion value. Stages in the optimal pattern are regarded as
‘detected’.

2.3. Calculation of AIC

The information criterion (we use here Akaike’s Information
Criterion, AIC [9]) is calculated from the sum of the degree of
freedom and log-likelihood of the model. The model is the division
pattern. The degree of freedom is the number of division points in
the division pattern (the number of stages minus one). The likeli-
hood value is calculated as the total likelihood of all each statistical
distribution model for each stage in the division pattern. We use
the normal distribution model here for each stage. The total likeli-
hood of the model is a product of all likelihood values of each
distribution model for each stage. Therefore the AIC value for the
model is calculated as
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where s is the number of stages of the model and Di is the likelihood
of the statistical distribution model for the i-th stage in the model,
which is calculated as follows:
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where ni is the number of samples in the i-th stage of the model, �ri

is the standard deviation of samples (expression levels of a gene) of
the i-th stage, xik is the value of the k-th sample in the i-th stage, and
�li is the sample mean value of the i-th stage. The AIC value is cal-
culated for all possible models on the given time series data under
the condition; the minimal length of a stage Lmin that is defined by
users.

s in Eq. (1) varies for division patterns. Let L is the length of
given time series data (L ¼

Ps
i¼1ni), the maximum value of s; smax,

is the maximum integer value that is less than L=Lmin. The possible
length of a stage is in a range of Lmin to L.

Our algorithm searches the optimal s and the optimal positions
of dividing points on the given sequence of real numbers.

Fig. 1. Optimal division of time series of quantitative data into stages. Sample distributions in a time series data are modeled by statistical distribution models (the normal
distribution model is applied in this paper). Likelihood values of fitted statistical models are the highest when the series of samples are divided appropriately into groups
(stages). The best division is of higher fitness values with the fewer number of divisions. The total likelihood of a division pattern is the product of those of all fitted statistical
distribution models. The information criterion values that represents the goodness of the division pattern is calculated from the total likelihood and the degrees of freedom of
a division pattern that is equal to the number of division points.
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