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a b s t r a c t

We consider a spatially explicit three-species food chain model, describing generalist top predator-
specialist middle predator–prey dynamics. We investigate the long-time dynamics of the model and
show the existence of a finite dimensional global attractor in the product space, L2ðXÞ. We perform linear
stability analysis and show that the model exhibits the phenomenon of Turing instability, as well as
diffusion induced chaos. Various Turing patterns such as stripe patterns, mesh patterns, spot patterns,
labyrinth patterns and weaving patterns are obtained, via numerical simulations in 1d as well as in 2d.
The Turing and non-Turing space, in terms of model parameters, is also explored. Finally, we use methods
from nonlinear time series analysis to reconstruct a low dimensional chaotic attractor of the model, and
estimate its fractal dimension. This provides a lower bound, for the fractal dimension of the attractor, of
the spatially explicit model.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The analysis and modeling of food chains is an active area of
research in the biological sciences. These chains comprise the pred-
ator–prey relations between species [21]. An interesting subclass
of such chains consists of three interacting species. The latter
include cases where there is both a specialist predator and a gen-
eralist predator. They could also include cases where there are
two competing predators. Such systems have many applications
in modeling tri-trophic food environments [1]. The interest in
three-species food-chain models stems from the seminal work of
Hastings and Powell [11] in which they show chaotic dynamics
in a food chain of a specialist-top-predator, specialist-middle-pred-
ator, and prey. Subsequently, these models have incorporated
many kinds of functional responses [41,42]. One of the issues that
has motivated much of the research on this problem is the discrep-
ancy between predicted chaotic dynamics in food chain models
and actual observations in nature, where such chaos is rarely
observed [38,45]. However, there are studies that do report chaos
in data from laboratory experiments with food chains [6].

Spatial spread of species in a food chain is ubiquitous in nature.
This spread can lead to many interesting spatial patterns, formed

due to the dispersal of species in the search for food, mates, and
also due to refuge from predators, such as via camouflage, [21].
Understanding the mechanisms that lead to the formation of these
patterns has been an issue of much interest in conservation biol-
ogy. A priori knowledge of these patterns can assist in conservation
efforts for endangered species as well as in predicting biological
invasions [30,36]. Among the various patterns that can form, Tur-
ing patterns are generated when the species in the food-chain
model have different diffusion coefficients. In [37,38] Upadhyay
and Rai proposed a model to understand in particular, the reasons
why chaos is rarely observed in natural populations, of three inter-
acting species. What sets apart this model from many others in the
literature, is that the top predator in this case is a generalist. That
is, the predator can change its food source in the absence of its
favorite food, as is commonly seen in nature. The model and its
variants have been studied by several authors [1,16,23]. Most of
these studies have focused on the original model, which is purely
temporal. Spatially explicit forms of the Upadhyay–Rai model have
not been investigated as thoroughly as their temporal counter-
parts. In particular there are very few works in the literature on
pattern formation in the model, [22].

Our objectives in the current manuscript are to investigate the
effect of spatial interactions on the three-species food-chain
model, (1)–(3), proposed in [37,38]. To this end we have shown
the following.
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(1) We prove global existence of a solution and the existence of
a global attractor for the spatial model, and derive upper esti-
mates for its fractal and Hausdorff dimensions, in a certain
parameter range. Our results are valid in 1d as well as in 2d
spatial domains.
(2) We investigate Turing instability, pattern formation and dif-
fusion induced chaos in this food-chain model, via numerical
simulations in 1d as well as in 2d. We show diffusion induced
temporal, as well as spatial, chaos in the model. We demon-
strate the formation of a wide variety of patterns, such as stripe
patterns, mesh patterns, spot patterns, labyrinth patterns and
weaving patterns, in certain parameter range.
(3) The estimates of the fractal dimension of the attractor
derived via functional analysis (Theorem 3.4 below), are found
to be quite large. We are unable to derive lower estimates by
standard functional analysis methods. In order to circumvent
this difficulty, we use nonlinear time-series analysis, and recon-
struct a low dimensional attractor. The upper estimates of the
fractal dimension of this attractor, provide us with a lower
bound for the attractor dimension of the full PDE system,
(4)–(6). We also show that the model possesses diffusion
induced temporal chaos as well as spatial chaos.

We briefly present the classical Upadhyay–Rai model. The three
species in the model are denoted as u;v , and r. Here, r is the
generalist top predator predating on v, which is its favorite food;
v in turn preys on the prey, u. This scenario is often seen in nature,
such as in a wasp parasitoid-spider-ant food chain, or more gener-
ally one could even consider a hyperparasitoid-parasitoid-host
food chain [29].

The model takes the following form (as in [37,38]),

du
dt
¼ a1u� b1u2 �w0

uv
uþ D0

� �
; ð1Þ

dv
dt
¼ �a2v þw1

uv
uþ D1

� �
�w2

vr
v þ D2

� �
; ð2Þ

dr
dt
¼ cr2 �w3

r2

v þ D3
: ð3Þ

There are various parameters in the model: a1; a2; b1;w0;w1;

w2;w3; c and D0;D1;D2;D3 are all positive constants. Their defini-
tions are as follows: a1 is the growth rate of prey u; a2 measures
the rate at which v dies out wi is the maximum value that the
per-capita rate can attain; D0 and D1 measure the level of protec-
tion provided by the environment to the prey; b1 is a measure of
the competition among prey, u; D2 is the value of v at which its
per capita removal rate becomes w2=2; D3 represents the loss in r
due to the lack of its favorite food, v ; c describes the growth rate
of r via sexual reproduction.

The above model is very rich dynamically. Simulations of this
ODE system [37] show chaotic behavior in various ranges of the
parameter space. In addition to chaotic solutions, states of extinc-
tion for certain species in certain parameter ranges, stable foci, and
limit cycles are also found. However, note that we have recently
shown that the original Upadhyay–Rai model as well as the spa-
tially extended model, can exhibit finite time blow-up, in certain
parameter range [24,25]. For the spatially extended system,
finite-time blow-up of the Lp norm of r, for all p, in the parameter
range c > w3

D3
, or even if c 6 w3

D3
is possible, if r0 and v0 are large

enough (that is kv0k1; kr0k1 should be larger than some prescribed
large constant).

However, it is in the parameter region w3
vþD3

< c < w3
D3

, that one
obtains the most interesting dynamics, including chaotic dynamics
and rapid fluctuations in the populations as seen via spiking of

the state variables. Our point here is that if one remains in the
small data regime (that is kv0k1; kr0k1 should be less than
some prescribed small constant), for w3

vþD3
< c < w3

D3
, the above

three species model can mimic certain realistic phenomenon, such
as rapid spikes/fluctuations in a population, while avoiding
blowup. These fluctuations are seen a lot in nature. For example,
C. floridanum, a species of minute sea snail, is a type of parasitoid
where a single parasitoid egg can produce up to 1500 distinct
individuals [29]. Thus this model is apt for describing a
hyperparasitoid-parasitoid-host food chain [29]. See Fig. 7 for such
spiking. Furthermore, such spiking is also seen in insect popula-
tions, such as in spruce budworm, where there are seasonal out-
breaks in the population, followed by rapid declines [12]. The
larch budmoth Zeiraphera diniana is also known to go through pop-
ulation cycles where its density can change by 10,000-fold, in
roughly eight year cycles [5]. Again, see Fig. 7 for such spiking.
These outbreaks can also be of gradient or eruptive type, which
are seen in various beetle populations such as bark, spruce and
mountain pine beetles [4,31]. Here a rapid change in environmen-
tal conditions, for the better, causes the population to quickly jump
to a new level. Although mathematically, this particular phenome-
non is better described by a shock, or gradient blow up [32], than a
spike.

Thus the model is best understood as one where, we segregate
the parameter space into ‘‘good’’ or ‘‘bad’’, depending on the
dynamics we would want to see. This is not uncommon in reaction
diffusion systems, modeling biological phenomenon. The literature
is full of models for realistic phenomenon, such as chemotaxis and
neuron firing, that yield blowup in certain parameter regime, and
global existence in another [7,15,17]. Here the blowup is under-
stood as concentration phenomenon for bacteria chasing after a
food source, or the sharp increase in the amplitude of a pulse along
a nerve, leading to firing, or the sharp increase in an insect popula-
tion from an outbreak. Thus in general, the blow up should be
viewed as a means to describe some of these sharp, yet biologically
realistic transitions, and not the actual blow up in the limit.

The organization of remainder of the paper is as follows. In Sec-
tions 2 and 3, we prove global existence of solution, and the exis-
tence of a finite dimensional global attractor for the spatial model,
in certain parameter regime. In Section 4, we present the uniform
steady-state solutions of the model, perform linear stability analy-
sis, and discuss Turing instability and pattern formation in the
model. We also calculate regions of the stable and unstable Turing
space with respect to model parameters. In Section 5, a detailed
reconstruction of the attractor by nonlinear time series analysis
is presented. We also present our results on diffusion induced
chaos. We conclude with a discussion of results in Section 6.

2. Global existence of solution and the existence of a global
attractor

We consider the following diffusive system,

ut ¼ d1uxx þ a1u� b1u2 �w0
uv

uþ D0

� �
; ð4Þ

v t ¼ d2vxx � a2v þw1
uv

uþ D1

� �
�w2

vr
v þ D2

� �
; ð5Þ

rt ¼ d3rxx þ cr2 �w3
r2

v þ D3
; ð6Þ

where the subscripts t and x denote time and space derivatives of
various variables, respectively.

The problem is posed on a domain X� ½0; TÞ, here X is bounded
and X ¼ ½0; L� � R1. We consider the following Neumann boundary
conditions:
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