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a b s t r a c t

The bidomain equations with Neumann boundary stimulation and optimal control of these stimuli are
investigated. First an analytical framework for boundary control is provided. Then a parallel finite ele-
ment based algorithm is devised and its efficiency is demonstrated not only for the direct problem but
also for the optimal control problem. The computations realize a model configuration corresponding to
optimal boundary defibrillation of a reentry phenomenon by applying current density stimuli.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The heart is an electrically-controlled mechanical pump which
drives blood through the circulatory system with remarkable effi-
ciency. Under healthy conditions its electrical activation is highly
organized, in disease, however, disturbances in the formation
and/or propagation of electrical impulses may induce reentrant
activation patterns which precipitate its rhythm significantly. Ulti-
mately, such fast rhythms may evolve to highly disorganized al-
most chaotic activation patterns, an electrical state referred to as
fibrillation. Under such conditions the heart looses its capacity to
pump a sufficiently large mass of blood through the circulatory
system. Without therapy, death would ensue within minutes.
The only reliable therapy to terminate this otherwise lethal condi-
tion is the delivery of a strong electrical shock. This therapy, re-
ferred to as electrical defibrillation, is nowadays reliably achieved
in a large patient population via the implantation of devices, so-
called implantable cardioverters defibrillators (ICD), which moni-
tor the heart rate and, if needed, deliver a discharge to restore a
normal rhythm.

Although ICD therapy has proved to be efficient and reliable in
preventing sudden cardiac death [2], it is far from ideal. There are
several known adverse effects secondary to the administration of

strong electrical shocks which are caused by the high field
strengths required to terminate fibrillation with a sufficiently high
probability. Moreover, psychological effects play an important role
as well since shock delivery is perceived as extremely painful by
conscious patients, leading to traumatization and a reduced quality
of life. The link between the high shock strengths required and ad-
verse effects provides the motivation for posing the defibrillation
process as an optimization problem, where one aims to achieve
defibrillation with minimal energy and, consequently, with mini-
mal detrimental side effects.

The optimal control approach to defibrillation is to determine
an applied electrical field in such a way that it optimizes a given
design objective, which is, in our case, the restoration of a tissue
state in which fibrillatory propagation cannot be maintained. This
can be achieved by driving the whole tissue to a resting state, or
equivalently, to an excited state. In both cases the main ingredients
for maintaining fibrillation, namely the presence of both propagat-
ing wavefronts and a sufficient mass of excitable tissue at rest, re-
ferred to as ‘‘excitable gap’’, in which these wavefronts can travel,
are missing. Achieving these objectives is challenging since, on bio-
physical grounds, shock-induced changes in polarization of both
polarities are always present during shock delivery [26,22].

In a previous work [17,16,15] we addressed these points by
modeling the controller action representing the current delivered
by the electrodes as distributed forces. One of the main objectives
of the current work consists in analyzing the case when the action
of the electrodes is modeled as Neumann boundary conditions.
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From a methodological point of view, in most, if not all, recent
finite element modeling studies the effect of extracellularly applied
electric fields has been accounted for either by imposing inhomo-
geneous Dirichlet boundary conditions to model extracellular po-
tential stimuli, or, by using current volume sources to model
current stimuli.

The use of inhomogeneous Neumann boundary conditions for
modeling current stimuli has been the method of choice in early
pioneering monodomain modeling work where the finite differ-
ence method was employed to model impulse propagation in 1D
strands or 2D sheets [27]. Surprisingly, to the best of our knowl-
edge, in the bidomain literature Neumann boundary conditions
for modeling current injection via electrodes have not been rigor-
ously stated yet, neither in bidomain forward models nor in the
context of optimal control. While equivalence between both for-
mulations, i.e. Neumann boundary conditions and volume sources,
can be achieved for any given setup, in the latter case where cur-
rents are injected via shape functions into 2D or 3D elements,
the total injected current depends on spatial discretization and
choice of weighting function. Thus, in the present work we aim
to investigate the suitability of using inhomogeneous Neumann
boundary conditions in a bidomain model, specifically, the feasibil-
ity of optimal boundary control for the bidomain equations.

A second important issue of the current work consists in com-
paring the nonlinear conjugate gradient and the Newton method
as iterative solution processes to solve the resulting optimization
problems. Here we point out that due to the complicated dynami-
cal systems behavior of the bidomain equations including wave
phenomena which change significantly during the iterations of
the optimal control scheme, it is out front not evident that the
strength of improved rate of Newton’s method over gradient based
methods can be achieved. Unless it is possible to obtain sufficiently
accurate approximations to the Hessian the Newton method will
provide no improvement or may fail. This behavior has been ad-
dressed in the passed for control of fluids, see e.g. [8,10], but there
is much less experience with optimal control of reaction diffusion
systems.

Finally any numerical optimization approach requires repeated
solution of the bidomain equations and the associated adjoint
equations. While an efficient solution strategy is already of para-
mount importance for the direct numerical simulation of bidomain
equation it is indispensable in the context of optimal control. For
this reason our numerical realization relies on parallelization. We
report on the parallel efficiency both for the direct simulation
and for the optimization algorithms.

The optimal pacing of the cardiac tissue is expressed by optimal
control with partial differential equations as constraints. Let
X � Rd; d 2 f2; 3g, denote a bounded connected domain with Lips-
chitz continuous boundary @X. The space–time domain and its lat-
eral boundary are denoted by Q ¼ X� ð0; T� and R ¼ @X� ð0; T�,
respectively. Also we denote the observation domain by Xobs � X.
The standard form control problem is expressed as:

ðPÞ
min Jðv ; IeÞ;
eðu;v ;w; IeÞ ¼ 0;

�
ð1:1Þ

where u; v and w are the state variables, and Ie is the extracellular
current which is utilized as a control variable in the optimal control
problem and e ¼ 0 stands formally for the dynamical system con-
straint. The dynamical behavior of the intra- and extracellular
potentials is described by the coupled system of reaction–diffusion
equations which can be expressed as follows

0 ¼ r � ðri þ reÞruþr � rirv in Q ð1:2Þ

@v
@t
¼ r � rirv þr � riru� Iionðv;wÞ þ Itrðx; tÞ in Q ð1:3Þ

@w
@t
¼ Gðv ;wÞ in Q ; ð1:4Þ

where u : Q ! R is the extracellular potential, v : Q ! R is the
transmembrane voltage, w : Q ! Rn represents the ionic current
variables, ri : X! Rd�d and re : X! Rd�d are respectively the intra-
cellular and extracellular conductivity tensors. The term Itrðx; tÞ is
the transmembrane current density stimulus as delivered by an
intracellular electrode. The Iionðv ;wÞ is the current density flowing
through the ionic channels and the function Gðv;wÞ determines
the evolution of the gating variables, which is determined by an
electrophysiological cell model, see e.g. [1] for more description
on these models. Eq. (1.2) above is an elliptic type equation, Eq.
(1.3) is a parabolic type equation and Eq. (1.4) is a set of ordinary
differential equations which can be solved independently for each
node. Typically, the conductivity tensors, which were considered
in our computations, are expressed in the following form,

rc ¼
rcl 0
0 rct

� �
; where c ¼ i; e; ð1:5Þ

where rcl and rct are longitudinal and transverse fiber conductivi-
ties, respectively.

The membrane model for the ionic activity is described by a set
of ordinary differential equations. The dimension of the ODE sys-
tem is a consequence of the ionic model. In our numerical compu-
tations, we used a modified FitzHugh–Nagumo (FHN) model, called
Rogers–McCulloch model [24], which consists of only two state
variables and has a cubic non-linearity in the transmembrane
potential

Iionðv ;wÞ ¼ gv 1� v
v th

� �
1� v

vp

� �
þ g1vw: ð1:6Þ

Gðv;wÞ ¼ g2
v
vp
� g3w

� �
ð1:7Þ

where g; g1; g2; g3 are prescribed positive real coefficients, v th > 0
is the threshold potential and vp > v th is the peak potential.

In the absence of a conductive bath both intracellular and extra-
cellular domains are electrically isolated along the tissue bound-
aries and homogeneous Neumann boundary conditions are
appropriate to reflect this fact, except for those parts of the bound-
ary where extracellular stimuli are applied. The initial values of the
transmembrane voltage and state variables are prescribed by given
values v0 2 L2ðXÞ and w0 2 L2ðXÞ. The initial and boundary condi-
tions are therefore prescribed as

g � ðrirv þ riruÞ ¼ 0 on R ð1:8Þ

g � reru ¼ Ie on C12 � ð0; T� ð1:9Þ

g � reru ¼ 0 on C3 � ð0; T� ð1:10Þ

vðx;0Þ ¼ v0 and wðx;0Þ ¼ w0 on X; ð1:11Þ

where g denotes the outwards normal to the boundary of X. Here Ie

is the extracellular current density stimulus which acts as control
along the boundary C12 ¼ C1 [ C2, where Ci; I ¼ 1;2;3 are mutu-
ally disjoint and satisfy C1 [ C2 [ C3 ¼ @X. For compatibility rea-
sons it is assumed throughout thatZ
@X

Ieðt; �Þds ¼ 0 ð1:12Þ

for almost every t 2 ð0; TÞ. In the numerical experiments Ie will be
only temporally dependent and will be of the form

Ie ¼ bIeðtÞðvC1
� vC2

Þ;
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