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26In the present paper we have first introduced a measure of dynamical entropy of an ecosystem on the
27basis of the dynamical model of the system. The dynamical entropy which depends on the eigenvalues
28of the community matrix of the system leads to a consistent measure of complexity of the ecosystem
29to characterize the dynamical behaviours such as the stability, instability and periodicity around the sta-
30tionary states of the system. We have illustrated the theory with some model ecosystems.
31� 2013 Published by Elsevier Inc.
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33

34 1. Introduction

35 An ecosystem consisting of a large number of interacting spe-
36 cies may be considered as a complex dynamical system [1]. In re-
37 cent years dynamical system model of complex ecological system
38 has experienced explosive growth. Different mathematical ideas
39 and techniques have been developed in the elucidation of different
40 underlying biological and ecological processes. To understand a
41 complex ecosystem we need some systematic methodology. The
42 differential equations used to model ecosystems are, in general,
43 non-linear. It is very difficult to find out the solution of the system
44 of non-linear equations in closed form. It is customary to study the
45 dynamical behaviours of such systems near the stationary states.
46 The linearized form of the system of equations around a stationary
47 state represents the local dynamical behavior of the system. The
48 community matrix introduced by Levin in the linearization process
49 plays a significant role in the determination of the qualitative nat-
50 ure of the nearby orbits or trajectories [2]. The community matrix
51 represents the mathematical structure of the system near the sta-
52 tionary states [3,4].
53 The objective of the present paper is to study the dynamical
54 behaviors associated with the community matrix from a different
55 mathematical background. The contribution of the paper is two
56 fold: Firstly, we wish to introduce a measure of dynamical entropy

57for the entropic characterization of the time-evolution of the eco-
58system. The methodology of the derivation of the dynamical entro-
59py is based on the entropy of a non-random square matrix.
60Secondly, we wish to study the importance of the dynamical entro-
61py in the characterization of stability, instability and periodicity of
62the stationary states of the ecosystem with some illustrative model
63ecosystems. The interrelation between the concept of stability and
64complexity has been investigated.

652. Model ecosystem: dynamical model and entropy

66We consider a multi-species ecosystem consisting of n species
67with population densities xiðtÞ; ði ¼ 1;2; . . . :;nÞ at any time t. Let
68us assume the system to be governed by the system of equations
69

_xi ¼ fiðx1; x2; . . . :; xn;aÞ; ði ¼ 1;2; . . . ;nÞ ð2:1Þ 7171

72where a is a constant parameter. The functions fi are assumed to be
73continuously differentiable in some open set X ¼ fxijxi P 0; i ¼ 1;2;
74. . . ; ng. The system of model Eq. (2.1) are, in general, non-linear and
75difficult to find out the solution in closed form. It is customary to
76study such a system close to some stationary state. Let
77x� ¼ ðx�1; x�2; . . . ::; x�nÞ be the stationary state of the system for a cer-
78tain value (or a range of values) of the parameter a. We consider
79a small deviation about the stationary state:
80yiðtÞ ¼ dxiðtÞ ¼ xiðtÞ � x�i ; ði ¼ 1;2; . . . ;nÞ. Linearizing the system of
81Eq. (2.1) about the stationary state x� ¼ ðx�1; x�2; . . . ::; x�nÞ we have
82the system of linear equations
83
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_yiðtÞ ¼
Xn

j¼1

@fi

@xj

� �
x�

yjðtÞ ði ¼ 1;2; . . . ;nÞ ¼
Xn

j¼1

aijðx�ÞyjðtÞ ð2:2Þ
8585

86 or in matrix form
87

_yðtÞ ¼ AyðtÞ ð2:3Þ8989

90 where the Jacobian
91

A ¼ ½aijðx�Þ� ð2:4Þ9393

94 is the so-called community matrix with elements
95

aijðx�Þ ¼
@fi

@xj

� �
x�

i; j ¼ 1;2; ::;n ð2:5Þ
9797

98 The elements faijðx�Þg of the community matrix A play significant
99 role in the dynamical behaviours of the ecosystem [4,5].

100 The solution of the matrix Eq. (2.3) is given by
101

yðtÞ ¼ dxðtÞ ¼ eAtdxð0Þ ð2:6Þ103103

104 where dxð0Þ is the initial deviation from the stationary state x�. Let
105 us now find the explicit form of the solution (2.6) in terms of the
106 eigenvalues ðk1; k2; . . . :; knÞ of the community matrix A. If the eigen-
107 vectors corresponding to the eigenvalues ðk1; k2; . . . :; knÞ are linearly
108 independent then the matrix A can be converted to the form of a
109 diagonal matrix with diagonal elements same as ðk1; k2; . . . :; knÞ.
110 Under the mathematical conditions of linearly independence of
111 the eigenvectors and the distinct eigenvalues ðk1; k2; . . . :; knÞ, the
112 explicit form of the solution (2.6) are given by Lakshmanan and
113 Rajasekar [6] and Rosen [7]
114

dxiðtÞ ¼ dxið0Þeki t ; ði ¼ 1;2; . . . ; nÞ ð2:7Þ116116

117 All the basic criteria of stability, instability and periodicity of the
118 system follow from the solution (2.7).
119 Let us now try to develop an entropic theory of time-evolution
120 of the ecosystem on the basis of the linearized model Eq. (2.3). En-
121 tropy plays a significant role in the study of evolution of a thermo-
122 dynamic system [8]. Like in thermodynamics we need an
123 expression of dynamical entropy for the study of time-evolution
124 of the ecosystem described by the dynamical model Eq. (2.3).
125 According to Eq. (2.3) the time-evolution of the system from the
126 initial state to the current state is given by
127

dxðtÞ ¼ eAtdxð0Þ ¼ BðtÞdxð0Þ ð2:8Þ129129

130 where BðtÞ ¼ eAt is the matrix of evolution dxð0Þ�!dxðtÞ. The evo-
131 lution matrix BðtÞ ¼ eAt characterizes the time-evolution of the
132 system. To find out a dynamical entropy for the time-evolution
133 dxð0Þ�!dxðtÞ we need a measure of entropy of the non-probabi-
134 listic square matrix BðtÞ ¼ eAt . Following Jumarie the entropy (of
135 order 1) of a n� n square matrix A consistant with Shannon clas-
136 sical entropy and Von Neumann quantum entropy is given by
137 Jumarie [9]
138

H1½A� ¼
Pn

i¼1jkij ln jkijPn
i¼1jkij

ð2:9Þ
140140

141 This entropy H1½A� given by (2.9) provides an entropic measure of
142 complexity (structural) of the community matrix A. The evolution
143 matrix BðtÞ ¼ eAt is dependent on both the community matrix A
144 and the time t. Following (2.9) the entropy (of order 1) of the evo-
145 lution matrix BðtÞ ¼ eAt is given by
146

H1½BðtÞ� ¼ H1½eAt� ¼
Pn

i¼1tkieki tPn
i¼1eki t

ð2:10Þ
148148

149 The entropy H1½BðtÞ� given by (2.10) then takes care of both the as-
150 pects of the community matrix A and the time t. We define the

151dynamical entropy (analogous to Kolmogorov-Sinai dynamical en-
152tropy or simply K.S. entropy) as the rate of change of the entropy
153H1½BðtÞ� or the entropy-production rate [10]
154

HðtÞ ¼ H1½BðtÞ�
t

¼
Pn

i¼1kieki tPn
i¼1eki t

ð2:11Þ
156156

157The expression (2.11) can be written as
158

HðtÞ ¼ d
dt

log
Xn

i¼1

eki t

( )
ð2:12Þ

160160

161where the sum-function
Pn

i¼1eki t is the trace of the diagonal evolu-
162tion matrix BðtÞ ¼ eAt . This is analogous to the canonical partition-
163function in statistical mechanics. The dynamical entropy HðtÞ is a
164real quantity inspite of the feasibility of complex or imaginary
165eigenvalues. Jumarie [9] has used the expression of dynamical en-
166tropy (2.12) to measure the complexity of a dynamical system.
167We shall consider both the terms dynamical entropy and dynamical
168complexity to be synonymous. In the next section we shall study
169the significance of the dynamical entropy (2.12) in the analysis of
170stability, instability and periodicity of some model ecosystems.

1713. Model ecosystem: analysis of stability, periodicity and
172complexity

173In this section we shall study the role of the measure of dynam-
174ical entropy (2.12) in the characterization of different dynamical
175behaviours such as stability, instability and periodicity etc. of the
176system around a stationary state.
177Let us illustrate these with a few simple model ecosystems.
178(A) Let us first consider the prey-predator model system [4,5]
179

_x1 ¼ x1ð2� x1 � x2Þ; _x2 ¼ x2ðx1 � x2Þ ð3:1Þ 181181

182It has three stationary states: ð0; 0Þ; ð2;0Þ; ð1;1Þ.
183(i) : Stationary point ð0;0Þ; Eigenvalues ð0;2Þ;
184Then the dynamical complexity is given by
185

HðtÞ ¼ 2e2t

1þ e2t
ð3:2Þ 187187

188which is positive and tends to 2 as t�!1. The positive value of the
189dynamical complexity HðtÞ indicates that the stationary point is
190non-attractive and unstable. The stationary point ð0;0Þ is thus a
191fixed-point repeller.
192(ii) : Stationary point ð2; 0Þ; Eigenvalues ð2;�2Þ;
193The dynamical complexity now is
194

HðtÞ ¼ 2e2t � 2e�2t

e2t þ e�2t
ð3:3Þ 196196

197which is positive and tends to 2 as t�!1. The positivity of the
198dynamical complexity indicates that the stationary point ð2; 0Þ is
199non-attractive and unstable. The stationary point ð2;0Þ is then a
200fixed-point repeller.

201(iii) : Stationary point ð1;1Þ; Eigenvalues ð�1� iÞ;
202

203We use the formula (2.12) to find out the dynamical complex-
204ity. The sum-function is given by
205X2

i¼1

eki t ¼ eð�1þiÞt þ eð�1�iÞt ¼ e�t½eit þ e�it� ¼ 2e�t cos t
207207

208Dynamical complexity is then given by
209

HðtÞ ¼ d
dt

log
X2

i¼1

eki t ¼ d
dt

log½2e�t cos t� ¼ �½1þ tan t� ð3:4Þ
211211
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