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Improved mechanistic understanding of biochemical networks is one of the driving ambitions of Systems
Biology. Computational modeling allows the integration of various sources of experimental data in order
to put this conceptual understanding to the test in a quantitative manner. The aim of computational mod-
eling is to obtain both predictive as well as explanatory models for complex phenomena, hereby provid-
ing useful approximations of reality with varying levels of detail. As the complexity required to describe
different system increases, so does the need for determining how well such predictions can be made.
Despite efforts to make tools for uncertainty analysis available to the field, these methods have not yet
found widespread use in the field of Systems Biology. Additionally, the suitability of the different meth-
ods strongly depends on the problem and system under investigation. This review provides an introduc-
tion to some of the techniques available as well as gives an overview of the state-of-the-art methods for
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1. Introduction

In the past decades, molecular biology has unraveled various
pathways that play a role in biological phenomena. Many of the
components and interactions involved have been identified by
employing a reductionist approach, isolating parts of the system
from the whole. Gradually, a picture of a complex network of var-
ious interacting subsystems is emerging. Investigation of the inter-
actions between various components of a system is essential for
understanding its emergent behavior. Consequently, there has
been a shift in paradigm from reductionism to integration [1-4].
By formalizing hypotheses on how a pathway operates in the form
of computational models our conceptual understanding can be put
to the test quantitatively [5-7]. By repeatedly challenging such
models with new data, we can iteratively obtain models that are
decreasingly wrong. The aim of Systems Biology is to obtain both
predictive as well as explanatory models for complex phenomena,
hereby providing useful approximations of reality with varying
levels of detail. In this review we focus mostly on dynamical mod-
els which consist of state variables (or states) which are quantities
that change over time, and parameters (fixed with respect to time).
These states are embedded in a system of equations which relate
the different states of the model.

To simulate the model and make predictions, parameter values
are required. These typically have to be estimated from data. Due
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to the fact that data is measured with finite accuracy and only a
subset of the state variables is accessible experimentally, uncer-
tainty analysis is a highly relevant topic. Despite efforts to make
tools for uncertainty analysis available [8-11] these methods have
not yet found widespread use in the field. Nevertheless, some
examples of successful applications in computational biology are
listed in Table 1. We provide an introduction to some of the tech-
niques available as well as give an overview of the state-of-the-art
methods for parameter uncertainty analysis [12-17]. Which meth-
ods are applicable to a specific problem strongly depends on the
system under investigation and the assumptions one is willing to
make. We hope to provide insight in the suitability of different
techniques for addressing uncertainty in computational modeling
of dynamical systems.

2. Computational modeling of biochemical systems

The use of dynamical models has a long history within several
disciplines of science. In the realm of classical physics, models of-
ten comprise of physical laws with well established and invariant
physical constants acting as parameters. In engineering, parame-
ters are often application specific, but the individual components
are usually well characterized and their interactions known. In
computational biology, the challenges faced are different. Though
methods for discovering interactions are well established
[32-34], techniques for accurately determining biochemical
parameters remain limited [12]. Additionally relying on measure-
ments that were performed in vitro can lead to inaccuracies [35]
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Table 1

A list of the methods discussed in this paper and some relevant applications in the field of Computational Biology.

Name Requirements Result Applied papers
Sensitivity analysis None Assessment of (local) sensitivity [18-21]
Profile Likelihood Likelihood function Assessment of identifiability [7,22]

Bootstrap None
Markov Chain Monte Carlo Weak identifiability
Sequential Monte Carlo Proper priors for all parameters

Distribution of parameters based on simulated replicates [15,23,24]
Posterior distribution [25-28]
(Approximate) posterior distribution [29-31]

due to differences in the biochemical environment and regulatory
mechanisms that were not accounted for [16]. Despite the wealth
of information that kinetic assays provide, such issues require
attention and warrant future research. Since such measurements
are both expensive as well as time consuming, the amount of data
is often relatively scarce. Moreover, considering the complexity of
models required to describe biological pathways, this leads to large
uncertainties in the inferred values of these biochemical parame-
ters. Consequently, this results in several poorly constrained and
therefore uncertain model predictions [10,24,36-38]. To deal with
such uncertainties and to ascertain their implications on scientific
conclusions, several methods have been developed. Some of these
are useful for probing model properties, others for designing infor-
mative experiments.

3. Parameter estimation

The scope of this review is restricted to dynamical systems that
can be described by ordinary differential equations (ODEs) (1) [39-
42]. Such a description is appropriate when the number of particles
involved in the biochemical network is large enough to be able to
consider concentrations and when spatial effects are negligible
[43-48]. Typically, such models take the following form:

X(t) = f(X(t),1i(t), D) (1)
() = g®(t),4) + &(t) (2)
%(0) = h(F) (3)

These models are described by equations which contain param-
eters p (which are fixed constants with respect to time) and inputs
ii(t) which depend on time and state variables X(t). Given a set of
parameters, inputs and initial conditions X(0), these equations can
subsequently be simulated, and time courses of the model state
variables can be obtained. Such systems are typically partially ob-
served, which means that measurements y(t) are performed on a
subset or a combination of the total number of states N in the model.
Additionally, these measurements are hampered by measurement
noise . Furthermore, many of the employed measurement tech-
niques necessitate the use of scaling and offset parameters G [49].
For ease of notation, 6 is defined as 6 = {f, §, 7}, which lists all the
parameters that should be defined in order to simulate the model.

After the model is postulated and data is acquired, parameter
estimation can be performed. To do this, consider the probability
density of observing data y given parameter values 6. For the sake
of clarity of exposition, we assume independent additive Gaussian
noise with constant variance for each measurement, which results
in a probability density function defined as (4). Here p refers to a
probability density.
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It is at this point where the so-called frequentist and Bayesian
methodologies begin to diverge. The former opts for a purely
data-based approach, aiming to find all the parameter sets which
describe the data to an acceptable degree p(y°|0) > py;,. Here the
threshold p;,, is determined by choosing a significance level and
computing the associated critical values of the uncertainty distri-
bution of the data. In a Bayesian approach, inference is performed
probabilistically, as parameters are treated as random variables
and Bayes’ theorem (6) is applied to incorporate prior knowledge
on these parameter values (7) [25,50]. Priors are specified in the
form of probability densities and are defined with respect to the
parameters. They usually represent either current belief [51] or at-
tempt to be non-informative. The latter is usually accomplished
either by choosing wide priors (such as gamma priors for parame-
ters with only positive support [38]) or priors that exhibit invari-
ance to parameter transformation [52]. In brief, the aim in
Bayesian inference is to sample from the posterior parameter prob-
ability density and determine bounds enclosing (100 — «)% of the
probability density.

_ P(BIA)P(A)
P(AIB) = ~PB) (6)
p(°10)p(d) _ p(y°10)p(d)
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Here the probability density of the parameter values is given by
p(6ly?) which can be computed from the probability density

P(dly®) = (7)

p(yP|0) of the data given parameters 0 , the prior probability den-

sity of the parameters p(f) and the marginal likelihood or model
evidence p(yP). Since the marginal likelihood does not depend on
the parameters, this merely acts as a normalizing constant.

In the frequentist paradigm, one usually proceeds by maximiz-
ing the likelihood function L(d) (Maximum Likelihood Estimation
or MLE) whose right hand side is the same as (4). Since the loga-
rithm does not change the location of the optimum with respect
to the parameters, one often minimizes the negative log-likelihood
in practice as it allows for efficient optimization due to its qua-
dratic nature. When the data variances are known, the normaliza-
tion constant is independent of the parameters and minimizing the
Residual Sum of Squares (RSS) becomes equivalent to maximizing
the likelihood (8).

EM:EN: <ny Yty )) )

i=1 j=1

When the variances o; have to be estimated from the data how-
ever, they should preferably be treated as additional parameters.
Since g; also appears in the normalizing constant, such an ap-
proach also leads to an additional term in the y? function namely
>°¥ Nilog(2ma?). Additionally, one can incorporate a prior distri-
bution on the parameters and perform estimation based on the
combined quantity. Maximizing this quantity results in the Maxi-
mum A Posteriori (MAP) estimator, which can also be interpreted
as a regularized form of MLE.

Determining which parameters actually maximize these
quantities is a non-trivial problem due to the existence of locally
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