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a b s t r a c t

Over the past decade, the biomathematical community has devoted substantial effort to the complicated
challenge of estimating parameter values for biological systems models. An even more difficult issue is
the characterization of functional forms for the processes that govern these systems. Most parameter
estimation approaches tacitly assume that these forms are known or can be assumed with some validity.
However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation
(DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically,
DFE allows the characterization of fluxes within such systems through an analysis of metabolic time ser-
ies data. Its main drawback is the fact that DFE can only directly be applied if the pathway system con-
tains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this
roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes
with independent kinetic information, which however is not always available. Employing Moore–Penrose
pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing
fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined
and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific mod-
eling framework and unaffected by noise in the experimental time series data. The results reveal whether
any fluxes may be characterized and, if so, which subset is characterizable. They also help with the iden-
tification of fluxes that, if they could be determined independently, would allow the application of DFE.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A central challenge of computational systems biology is the
translation of biological systems into mathematical models.
Addressing this challenge critically depends on two components:
data of high quality and effective strategies for model design, diag-
nostics, and analysis. The translation process itself consists of two
steps, namely the determination of suitable mathematical repre-
sentations and the identification of values for the parameters in
these representations. Recent years have witnessed enormous ef-
forts in the area of parameter estimation, indicating that parameter
estimation is an unavoidable and very difficult task that is not yet
completely solved (e.g., [1–5]). Some of its difficulties are of com-
putational nature, while others are due to the noisiness of biolog-
ical data and the fact that several computed solutions often lead to
similarly good data fits [6–11].

The parameter estimation task is not only difficult; it also
makes a fundamental a priori assumption, namely, that the math-
ematical structure of the model representing the given data is
known. However, this assumption is seldom entirely true; in fact,
one could legitimately ask whether we ever truly know the

structural format of a model in biology. The choice of a particular
structure for a given modeling task may be rationalized in various
ways. The traditional argument has been that certain functions or
models had been used frequently and successfully in a particular
biological subfield and therefore had developed into default repre-
sentations. A good example in ecology is the Lotka–Volterra (LV)
model, which describes the time-dependent changes in population
sizes by linear and binomial terms that represent interactions
among the various pairs of populations [12–15]. LV models have
been very successful, but no ecologist would claim that they cap-
ture the dynamics of ecosystems in their full complexity. A second
example is the Michaelis–Menten function [16], which was derived
from a conceptual scheme describing the enzyme catalyzed con-
version of a substrate into a product under idealized conditions.
Although these conditions are seldom present in real cells
[17,18], this function has been used as a default in thousands of
biochemical studies, and even in cases that have not much to do
with enzyme catalysis, such as the uptake of nutrients through
the root system of a plant [19].

The choice of an appropriate model becomes more complicated
in cases where the processes to be represented are aggregates of
several steps [20,21]. An example is the ubiquitous effect of an
extracellular ligand or an intracellular process like gene expres-
sion. At a coarse level, this effect is direct: if the ligand is present,
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a gene becomes expressed, and without a ligand, the gene is more
or less silent. However, any description of this relationship in detail
becomes exceedingly difficult, as it typically would have to account
for physical changes in the conformation of the receptor, an entire
signaling cascade, the translocation of a transcription factor, as
well as the transcriptional machinery.

The alternative to an a priori assumption of a particular func-
tional form is the use of a ‘canonical’ approximation, which is a
representation that is based on theory, always leads to the same
mathematical structures, and therefore permits streamlined analy-
ses. The LV models mentioned earlier, as well as power-law models
of Biochemical Systems Theory (BST; [4,18,22,23]) and linear rep-
resentations fall into this category. The advantages of these repre-
sentations include their guaranteed appropriateness at some
operating point of choice, generality in applications, mathematical
and computational tractability, and the fact that these types of
models, at least initially, require very few application-specific
assumptions. Nonetheless, canonical models are not necessarily
the perfect answer to the question of what an appropriate repre-
sentation of a process should look like, because they are not mech-
anistic and their parameters therefore do not have a mechanistic
meaning. Also, like all other representations, they have by defini-
tion a limited range of valid approximation, and the size of this
range is almost always unknown and difficult to assess.

The question thus arises whether it is possible to infer mathe-
matical descriptions that adequately represent the true biological
process without introducing too much bias. In an attempt to ad-
dress this question for metabolic pathway systems, we recently
proposed the method of Dynamic Flux Estimation (DFE; [24]),
which is briefly reviewed in a later section. DFE uses as input the
topology of a pathway system, together with time series measure-
ments of the involved metabolites over a sufficiently wide time
horizon. Of note is that DFE presupposes no knowledge or assump-
tions regarding the processes governing a metabolic system, but
only of the topology of the network. In ideal cases, the input infor-
mation is sufficient to prescribe a straightforward strategy for
characterizing trends of all processes as they change over time or
as they are affected by metabolites and modulators in the system.
These resulting trends are not given as numerical functions, but as
graphical representations. These plots, in turn, can directly be used
for further analysis or allow the testing of numerically specified
candidate functions. Thus, in contrast to identifiability tasks, which
have the goal of determining optimal numerical settings for a mod-
el, the first phase of DFE addresses a characterizability task that
precedes the identification of functional forms and parameters in
the second phase.

Unfortunately, the ideal conditions allowing such an unbiased
flux characterization are not often given. In particular, most meta-
bolic pathway systems contain more fluxes than metabolite pools,
and this discrepancy leads to a stoichiometric matrix of the flux
system that has less than full rank (see later). Thus, unless addi-
tional information on sufficiently many fluxes is available, DFE
cannot be applied. It is not even clear which fluxes would need
to be identified independently to permit subsequent DFE. Discus-
sion of this issue has led to suggestions for potentially helpful addi-
tional information, which could come from different sources. For
example, in addition to the metabolic time series one might have
measurements of some in- or effluxes. One might also be able to
assume a flux representation from generally accepted kinetic
knowledge [25]. If sufficiently many fluxes can be numerically
characterized in this manner, the remaining fluxes can be com-
puted in a point-wise fashion, as it is done in DFE with a system
of full rank. If the data are rich enough, it is also sometimes possi-
ble to infer some fluxes from the data themselves [26].

This article presents an extended, general strategy for charac-
terizing fluxes for pathway systems where the original DFE

strategy is insufficient. The strategy uses a pseudo-inverse matrix
method that reveals which reaction steps in a system are uniquely
characterizable if time series data are available, even if the system
is underdetermined. Secondly, the method permits the scanning
for those reaction steps in a pathway system that, if they could
be characterized independently, would be most beneficial for a
subsequent DFE analysis. Intriguingly, the characterizability meth-
od proposed here is model free and uses only the topology of the
pathway system, but no knowledge of regulatory features or spe-
cific time series data. The immediate result is a list of all reaction
steps that could be uniquely characterized in a DFE sense if time
series were available. Of course, the actual characterization of dy-
namic trends requires data, and a correct interpretation of these
trends requires knowledge of the regulatory control patterns of
the system.

2. Methods

2.1. Metabolic time series data

Modern 13C- and 31P-NMR methods permit the non-invasive
determination of the concentrations of substrates and intracellular
metabolites in living cell cultures. These measurements can be
made every 30 s or even faster, thereby leading to dense metabolic
time series data on the same cells and under the same conditions.
In some sense, these data reflect all metabolic activities in these
cultures, at least in principle. Examples of such data and their anal-
ysis can be found in [9,27–29].

Mass spectrometry (MS) has advanced to a point where very
many metabolites in very small quantities can be identified simul-
taneously. While the method is destructive and requires the run-
ning of standards, it can be used to generate time series data as
well. As an example, Kinoshita and colleagues measured metabolic
time-courses of human red blood cell exposed to hypoxia, using
capillary electrophoresis coupled to time-of-flight MS [30]. Other
destructive methods, including liquid and gas chromatography,
can similarly be used to establish metabolic profiles over relevant
time horizons.

2.2. A brief review of dynamic flux estimation (DFE)

2.2.1. Rationale
The generic format of ODE models for metabolic systems is

dX
dt
¼ _X ¼ N � R: ð1Þ

In this generic formulation, X is the vector of metabolite con-
centrations, N is the stoichiometric matrix, and R is a vector con-
taining the specific reactions in the pathways. The stoichiometric
matrix describes which variables are involved in which reaction
[31–33]. An example is the branched pathway system in Fig. 1,
which consists of one independent variable (X0), three dependent
variables (X1,X2,X3) and five reactions (m1, . . .,m5), and has the stoi-
chiometric matrix

Fig. 1. Branched pathway with one feedback signal.
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