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a b s t r a c t

Reconstructing gene regulatory networks from high-throughput measurements represents a key problem
in functional genomics. It also represents a canonical learning problem and thus has attracted a lot of
attention in both the informatics and the statistical learning literature. Numerous approaches have been
proposed, ranging from simple clustering to rather involved dynamic Bayesian network modeling, as well
as hybrid ones that combine a number of modeling steps, such as employing ordinary differential equa-
tions coupled with genome annotation. These approaches are tailored to the type of data being employed.
Available data sources include static steady state data and time course data obtained either for wild type
phenotypes or from perturbation experiments.

This review focuses on the class of autoregressive models using time course data for inferring gene reg-
ulatory networks. The central themes of sparsity, stability and causality are discussed as well as the abil-
ity to integrate prior knowledge for successful use of these models for the learning task at hand.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A number of technological advances, such as DNA microarrays,
RNA-Seq [1], liquid chromatography tandem mass spectrometry
[2], and similarly liquid or gaseous chromatography mass spec-
trometry [3], have enabled biomedical researchers to collect large
amounts of transcriptomic, proteomic and metabolomic data. In
addition, curated repositories containing both vast amounts of
such data, as well as functional information, ontologies, gene and
protein interactions, pathways, etc. are expanding at a fast pace
(e.g. KEGG, IntegromeDB, BioGrid, GEO, NURSA, etc.).

The increasing availability of such high dimensional data and
structured information have led to a number of novel learning
problems, including that of network inference. Networks have be-
come a key tool in computational biology due to their ability to
capture at an appropriate level of abstraction biological processes.
Overall, the study of biological networks including modeling, anal-
ysis, reconstruction and visualization aspects has become a key to-
pic in bioinformatics and computational biology (for a review and
recent trends see [4]).

A number of learning tasks have been studied in the literature,
based on the type of biological network under consideration. For
example, in metabolic reaction networks, the focus has been on

learning enzyme kinetic parameters [5], stoichiometric analysis,
as well as finding the operative modes of such networks subject
to catalytic activity and steady state operational constraints. In
protein interaction networks, predictions of interactions are based
both on protein descriptors and labeled edges [6]. Information ob-
tained from protein–protein interaction networks has proved use-
ful in protein function prediction and in learning protein
complexes [7], while predicting cellular responses using ontology
information has been a key task involving signaling networks. In
this review study, we focus on the problem of reconstructing
(inferring) the structure of gene regulatory networks (GRN). Such
networks involve interactions between DNA, RNA, proteins and
other biomolecules, whose edges represent functional influences
of one molecule on the other, rather than chemical interactions.

This learning task has become a central one in functional
genomics, as the growing literature on the subject attests [8–10].
Two main types of data have been used to learn such networks:
steady state data and time course data. steady state data are ob-
tained from a long-term observation of gene expression, assuming
the system reaches an equilibrium state. For instance, multiple bio-
logical replicates obtained at some late point in time provide such
steady state data. Such data are usually obtained from microarray
technologies, and provide a global view of the biological system
under study in its natural state (wild type); however, their infor-
mational content for network reconstruction purposes is in general
limited and accurate network inference usually requires a very
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large number of replicates [11]. On the other hand, time course
data even for wild type measurements provide insights on the
transitory behavior of the biological system which is induced by
regulations, especially if the system is observed under different ini-
tial conditions due to perturbations, as discussed next.

A particularly informative source for the learning task at hand
is data from perturbation experiments, involving specific gene
knock-outs/downs or silencing. They may correspond to a single
time observation point, selected so that the perturbation has
manifested itself in the system, or could take the form of time
series, as discussed above. The advantage of time course data ob-
tained from perturbation experiments is that they contain signif-
icant information about the dynamics of the system and are
shown to be a key component for network inference in the
DREAM7 challenge on experimental design for parameter estima-
tion in network models (more information regarding the DREAM
challenge competition is provided in Section 9). The downside of
perturbation data is that they are usually obtained from single
gene knock-outs (downs). Hence, every replicate (time series or
single time point observation) offers limited information about
the overall system, especially when joint regulations are involved.
Moreover, large scale perturbation experiments for most organ-
isms are not readily available, due to technical complexities and
cost considerations.

On the other hand, wild type time course data are still attractive
for inferring relatively large scale GRNs, since they contain ade-
quate information about regulatory interactions and are signifi-
cantly less expensive to acquire compared to perturbation data.

For inferring GRNs, the majority of approaches in the literature
belong to the class of unsupervised methods, although there has
been work that assumes partial knowledge of the network which
is either integrated as prior information in the model employed,
or used in a supervised approach [12,13]. The class of unsupervised
approaches can be divided in the following two categories:
(i) model-based ones that aim to capture the dynamical behavior
of the GRN by estimating the parameters of a chosen model
[14–17,8,9,18–20], and (ii) model-free approaches that extract
dependencies among state variables using information-theoretic
criteria in the spirit of ARACNE [15,21,22].

This review primarily focuses on inferring GRNs from time
course data and model-based approaches. Our goal is to emphasize
the key elements that are common in the best off-the-shelf net-
work inference algorithms and to outline the set of important fea-
tures that such algorithms should possess to meet future
challenges. A key feature is that of sparsity, due to the following
facts. First, statistical analysis of known regulatory networks has
shown that scale-free models are suitable to represent the topolog-
ical structure of the network, thus reflecting their sparse nature.
Second, most available data sets contain relatively few time points
compared to the number of genes measured, thus making the use
of sparse models obligatory. Another key element in network infer-
ence (and in learning complex structures in general) is that of
stability of the algorithm. The concept of stability has been central
for model selection in regularized regression [23] or as a construc-
tion principle in various randomized models, including bagging
and random forests. Recent works explore the use of this concept
in GRN inference [24,25]. Taking another angle, the ability to
integrate prior knowledge into a model or in a learning method
represents a valuable property in a field where partial knowledge
coming from different sources may be available [26]. Finally a
key question regarding network inference is the semantics associ-
ated with a direct edge in a regulation graph. Directed edges under
certain conditions reflect causal relationships [27]. Even though
estimating such relationships is known to be a very challenging
task, causality nevertheless represents a central issue in network
inference.

The remainder of the paper is organized as follows. Section 2
presents the problem of gene regulatory network inference from
time course data and emphasizes desirable properties of a network
structure inferred by a learning method. Section 3 gives an over-
view of the main Markov models used for network inference from
time course data. In Sections 4 and 5, different works about Markov
models and their associated network inference methods are re-
viewed and when it is possible, analyzed through the concepts of
sparsity and causality. Section 4 focuses on linear autoregressive
models for which sparse regression has been largely developed
and from which Granger-causal networks can be inferred. Exten-
sions of linear autoregressive models described in Section 5 con-
sider generalized additive models and kernel-based methods.
Section 6 gives a brief presentation of dynamic Bayesian networks
that support, as a special case of autoregressive models, specific
learning strategies. In Section 7, we highlight the notion of stability
and describe how it has been recently used for model selection and
to improve upon a base model. Section 8 addresses prior integra-
tion in the whole set of reviewed models, while Section 9 provides
an overview of the performance of various methods in the DREAM
computational challenges. Finally, Section 10 discusses recent
trends and future challenges.

2. Gene regulatory network inference from time course data

In model-based approaches to network inference, a GRN is ab-
stracted and considered as a dynamical system whose states corre-
spond to different mRNA concentrations. The network structure is
defined as a directed graph G whose nodes are associated to genes
and whose directed edges represent the presence or the absence of
regulations1 from one regulating gene to a target gene. In the paper,
jGj ¼ p denotes the number of genes and A, a binary matrix of size
p� p, is the adjacency matrix of graph G.

Assuming that we observe gene expression levels for wild type,
we denote by xT the p-dimensional vector of the gene expression
levels measured at time T. Gene regulatory network inference con-
sists in providing an estimate of A denoted by bA, given the time
course Sn ¼ fx0; . . . ;xn�1g of length n measured at equidistant time
points t0; . . . ; tn�1, with ti ¼ ti�1 þ s; i ¼ 1; . . . ;n� 1. In the case the
time points are not regularly spaced, which happens rather fre-
quently in biological experiments, the observations are smoothed
by a nonparametric regression which is re-sampled subsequently.
The sampling rate s is in this case an additional hyperparameter
of any discrete-time modeling. This estimation task is by definition
unsupervised unless partial knowledge about the graph is avail-
able. The main part of the paper is devoted to the case when no
edges are known. However, integration of prior knowledge will
be discussed in detail in Section 8.

Model-based approaches mainly proceed in two steps: first, gi-
ven a model of the dynamical systemM, they estimate its param-
eters from observed time course and second, they extract from its
parameters an estimate bA of the target matrix A. In some cases, like
in Dynamical Bayesian Learning, the network structure is included
in the parameter set and the second step is straightforward.

2.1. Desirable properties for the estimated network

Let us discuss the properties for the network structure esti-
mated from model M and time course data Sn. Beyond structure
consistency, which will not be discussed here per se, other proper-
ties related to what biologists expect from the automated inference
process can be targeted. They include network sparsity and
stability of the algorithm employed. Next, we provide a high level

1 For sake of simplicity, we will only consider transcriptional regulations.
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