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a b s t r a c t

We develop a second-order high-resolution finite difference scheme to approximate the solution of a
mathematical model describing the within-host dynamics of malaria infection. The model consists of
two nonlinear partial differential equations coupled with three nonlinear ordinary differential equations.
Convergence of the numerical method to the unique weak solution with bounded total variation is
proved. Numerical simulations demonstrating the achievement of the designed accuracy are presented.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Malaria infection has been a major health problem for hundreds
of years. As a result, it has been a topic of intense study. In relatively
recent years, the mathematical community has joined the group of
researchers of this disease [16–18,20,22,27,32–35]. These works in-
clude several approaches to understanding the disease. Some are
concerned with the spread of the disease throughout a human pop-
ulation [16,17,35]. Others focus on the dynamics of the disease with-
in a particular host [18,20,22,27,32–34]. In [32], a new approach was
taken. There, the dynamics of the red blood cell population were in-
cluded with models that had been previously studied [5,8,12–14].

Numerical methods for studying size-structured models have
included finite-element methods [12], monotone approximations
[4], finite difference schemes [5–7,19,30], and integration along
characteristics [2,9,10,14,21,23,25]. Higher order schemes for solv-
ing such models have also been developed (e.g. [2,9,11,21,23]). The
paper [1] presents a good review of several numerical methods
developed for solving size-structured population models. In that
paper the methods are compared with regards to accuracy, effi-
ciency, generality and mathematical methodology. In the area of fi-
nite difference schemes, earlier work on such problems utilized
implicit first-order methods that proved valuable in both providing
numerical approximations and a tool for obtaining existence-
uniqueness results. Later, second-order schemes were introduced
[7,9,21,23,30] as it became apparent that the first-order schemes

required rather small step sizes and long computation times to
provide accurate numerical results. Here we will develop a sec-
ond-order finite difference scheme for the erythropoiesis model
subject to malaria infection studied in [32,33]. Although a first-
order finite difference scheme has been developed in [32], to our
knowledge, the scheme we present here is the first high-order
method developed for computing solutions of the erythropoiesis
model subject to malaria infection presented in (2.1).

The paper is organized as follows: Section 2 will provide some
biological background and introduce the model. Section 3 will
introduce the finite difference scheme and the notation used
throughout the paper. Section 4 provides estimates for the finite
difference scheme and Section 5 concludes with showing that the
finite difference scheme converges to the unique weak solution
of the model. In Section 6 we demonstrate the order of the method
with numerical results and apply the method to a linear problem
with a smooth solution. We also show that the method outper-
forms a first-order method when solutions are discontinuous. Fi-
nally, we make some concluding remarks in Section 7.

2. The structured model

The host of the malaria parasite, YðtÞ, is the mature red blood
cell (density mðt; mÞÞ. So we begin our discussion with the process
of red blood cell production (erythropoiesis). This process begins
when the body detects low oxygen levels in the blood and
responds by releasing erythropoietin, whose concentration we de-
note by EðtÞ, from the kidneys (modeled by f ðt;MðtÞÞÞ. This hor-
mone is the signal for stems cells in the bone marrow to join the
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red blood cell precursor population, whose density we denote by
pðt;lÞ. This recruitment of stem cells is assumed to be proportional
to the erythropoietin concentration, with /ðtÞ being the function of
proportionality. These cells are structured by their maturity level,
l, which is relative to their hemoglobin content. The rate of this
process is dependent on the erythropoietin concentration. We de-
note this rate by gðEðtÞÞ. Once they reach full maturation, lF , they
leave the bone marrow and enter the mature red blood cell popu-
lation. We structure the mature red blood cell population with the
variable m, which denotes age. Precursors undergo mitosis during
the beginning of the maturation phase. They also have a natural
death rate, which is dependent on the erythropoietin concentra-
tion. We denote the net result of this birth and death with
rðl; EðtÞÞ. Mature red blood cells have no nucleus, and thus do
not divide. Their age-dependent death rate is denoted by
cðt; m;MðtÞÞ. The decay rate of erythropoietin is known to depend
on the total precursor population [29] and is denoted by aEðPðtÞÞ.

Once the malaria parasite enters the blood stream of a host, it
seeks to infect a healthy red blood cell (infection rate ks). These in-
fected red blood cells, XðtÞ, travel throughout the blood stream
while the parasite replicates within them. After some time, the cell
bursts and releases a number, rðtÞ, of new parasites into the blood
stream which then seek to continue the process. We denote the
bursting rate of infected red blood cells by sðtÞ. Although some
individuals may develop immunity to certain species of malaria
after surviving infection, we assume that this is the first infection
and so no immunity exists. Still, both infected red blood cells and
free parasites will experience natural death rates, which we denote
by ax and ay, respectively. While malaria parasites do not infect
precursor cells, it was found in [15] that infected red blood cells re-
lease a toxin that suppresses precursor production. The rate of this
reduction is modeled by function HðXÞ. Taking these processes into
account leads to the following model:
@pðt;lÞ
@t

þ gðEðtÞÞ @pðt;lÞ
@l

¼ rðt;l; EðtÞÞpðt;lÞ � HðXðtÞÞpðt;lÞ;

0 < t < T; 0 < l < lF ;

@mðt; mÞ
@t

þ @mðt; mÞ
@m

¼ �cðt; m;MðtÞÞmðt; mÞ � ksYðtÞmðt; mÞ;

0 < t < T; 0 < m < mF ;

dEðtÞ
dt
¼ f ðt;MðtÞÞ � aEðPðtÞÞEðtÞ; 0 < t < T;

dYðtÞ
dt
¼ rðtÞsðtÞXðtÞ � ksYðtÞMðtÞ � ayYðtÞ; 0 < t < T;

dXðtÞ
dt
¼ ksYðtÞMðtÞ � sðtÞXðtÞ � axXðtÞ; 0 < t < T;

gðEðtÞÞpðt;0Þ ¼ /ðtÞEðtÞ; 0 < t < T;

mðt;0Þ ¼ gðEðtÞÞpðt;lFÞ; 0 < t < T;

pð0;lÞ ¼ p0ðlÞ; 0 6 l 6 lF ;

mð0; mÞ ¼ m0ðmÞ; 0 6 m 6 mF ;

Eð0Þ ¼ E0; Yð0Þ ¼ Y0; Xð0Þ ¼ X0: ð2:1Þ

Here PðtÞ ¼
R lF

0 pðt;lÞdl and MðtÞ ¼
R mF

0 mðt; mÞdm are the total
populations of precursor and mature red blood cells, respectively.

3. A second-order high resolution finite difference scheme

Let c be a sufficiently large positive constant. Throughout the
discussion we impose the following regularity conditions on our
model parameters in (2.1):

(H1) The function HðXÞ is continuously differentiable and
0 6 HðXÞ 6 c for X 2 ½0;1Þ.

(H2) gðEÞ is continuously differentiable and 0 < gðEÞ 6 c for
E 2 ½0;1Þ.

(H3) rðt;l; EÞ is continuous with respect to t, continuously
differentiable with respect to E, and for any
ðt;l; EÞ 2 ½0; T� � ½0;lF � � ½0;1Þ; jrðt;l; EÞj 6 c. Fur-
thermore, rðt;l; EÞ has bounded total variation in l
uniformly in ðt; EÞ 2 ½0; T� � ½0;1Þ.

(H4) cðt; m;MÞ is continuous with respect to t, continuously
differentiable with respect to M, and for any
ðt; m;MÞ 2 ½0; T� � ½0; mF � � ½0;1Þ;0 6 cðt; m;MÞ 6 c.
Furthermore, cðt; m;MÞ has bounded total variation in
m uniformly in ðt; EÞ 2 ½0; T� � ½0;1Þ.

(H5) The function f ðt;MÞ is continuous with respect to t,
continuously differentiable with respect to M, and
0 6 f ðt;MÞ 6 c for ðt;MÞ 2 ½0; T� � ½0;1Þ.

(H6) The function aEðPÞ is continuously differentiable and
0 6 aEðPÞ 6 c for P 2 ½0;1Þ.

(H7) The function sðtÞ is continuous and 0 6 sðtÞ 6 c for
t 2 ½0; T�.

(H8) The function rðtÞ is continuous and 0 6 rðtÞ 6 c for
t 2 ½0; T�.

(H9) The function /ðtÞ is continuously differentiable and
0 6 /ðtÞ 6 c for t 2 ½0; T�.

(H10) E0;Y0;X0; ks;ax;ay are nonnegative constants.
(H11) p0ðlÞ, m0ðmÞ are nonnegative with kp0kBVð0;lF Þ,

km0kBVð0;mF Þ 6 c.

Note that in assumptions (H3) and (H4) we assume only
bounded total variation smoothness in l and m in order to allow
discontinuities which arise in applications [5]. Now we give the def-
inition of a weak solution to problem (2.1) as follows: A 5-tuple
ðp;m; E;Y;XÞ 2 ðBVðð0; TÞ�ð0;lFÞÞ; BVðð0; TÞ�ð0; mFÞÞ;C½0; T�;C½0; T�;
C½0; T�Þ is called a weak solution to the problem (2.1) if it
satisfies:

Z lF

0
pðt;lÞfðt;lÞdl¼

Z lF

0
p0ðlÞfð0;lÞdl

�
Z t

0
gðEðsÞÞpðt;l�F Þfðs;lFÞds

þ
Z t

0
/ðsÞEðsÞfðs;0Þds

þ
Z t

0

Z lF

0
½fsðs;lÞþgðEðsÞÞflðs;lÞ�pðs;lÞdlds

þ
Z t

0

Z lF

0
½rðs;l;EðsÞÞ�HðXðsÞÞ�pðs;lÞfðs;lÞdlds;

Z mF

0
mðt;mÞ1ðt;mÞdm¼

Z mF

0
m0ðmÞ1ð0;mÞdm�

Z t

0
mðs;m�F Þ1ðs;mFÞds

þ
Z t

0
gðEðsÞÞpðs;l�F Þ1ðs;0Þds

þ
Z t

0

Z mF

0
½1sðs;mÞþ1mðs;mÞ�mðs;mÞ�dmds

�
Z t

0

Z mF

0
½cðs;m;MðsÞÞþksYðsÞ�mðs;mÞ1ðs;mÞdmds;

EðtÞ ¼ E0 þ
Z t

0
½f ðs;MðsÞÞ � aEðPðsÞÞEðsÞ�ds;

YðtÞ ¼ Y0 þ
Z t

0
½rsðsÞXðsÞ � ksYðsÞMðsÞ � ayYðsÞ�ds;

XðtÞ ¼ X0 þ
Z t

0
½ksMðsÞYðsÞ � sðsÞXðsÞ � axXðsÞ�ds ð3:1Þ

for each t 2 ð0; TÞ, every test function f 2 C1ð½0; T� � ½0;lF �Þ and
every test function 1 2 C1ð½0; T� � ½0; mF �Þ. Here, pðt;l�F Þ ¼
liml!l�F

pðt;lÞ and mðt; m�F Þ ¼ limm!m�F
mðt; mÞ.
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