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a b s t r a c t

A Gompertz-type diffusion process characterized by the presence of exogenous factors in the drift term is
considered. Such a process is able to describe the dynamics of populations in which both the intrinsic
rates are modified by means of time-dependent terms. In order to quantify the effect of such terms
the evaluation of the relative entropy is made. The first passage time problem through suitable bound-
aries is studied. Moreover, some simulation results are shown in order to capture the dependence of
the involved functions on the parameters. Finally, an application to tumor growth is presented and sim-
ulation results are shown.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Predictive modeling is a key field in various contexts such as
economy, biology, medicine, ecology, computer science. Growth
curves often contain a final phase in which the growth rate de-
creases and finally reaches zero, so that an asymptotic size is
reached. In such cases, Gompertz curve seems to be able to
model a lot of phenomena. It was proposed as e.g. bacterial
growth [16] and to analyze the monthly average Money & Quasi
Money’s growth data from People’s Bank [12]. In [1], a stochastic
model based on the deterministic Gompertz curve was used to
describe the growth of a solid tumor treated with a time-depen-
dent therapy able to modify the birth rate of the tumor cells.
Moreover, in [3] the estimation of the involved parameters was
performed and a strategy based on two or more control groups
was proposed to estimate the function representing the effect
of the therapy. An application to infer the net effect of cisplatin
and doxorubicin + cyclophosphamide in actual murine models
was presented. Thereafter other models were proposed to in-
clude more and more features of the tumor growth. For example,
in [2] a model based on a two-dimensional process was pro-
posed to consider the differentiation between proliferating cells
(in phase G1) and quiescent ones (out of the cellular cycle).
The study was focused on the analysis of the influence of specific
(able to damage tumor cells only in a fixed phase of the cell cy-

cle) and non specific cycle drugs (able to damage tumor cells in
any phase of the cellular cycle). Furthermore, in [4] the estima-
tion of the parameters describing the proliferating cells was pro-
posed comparing two different methods: the first one based on
the maximum likelihood method and the second one based on
linear regression.

In the present paper, we generalize the model in [1] assuming
that the effect of the therapy also modifies the death rate of
the tumor cells. Indeed, anti-angiogenetic drugs can have both
anti-proliferative and pro-apoptotic action as, for example, the
anti-oestrogen tamoxifen in the breast cancer (see [7,8]).

We analyze the relative entropy (Kullback Leibler divergence)
as a non symmetric measure of the distance between the distribu-
tions of the processes in the presence of suitable protocol treat-
ments. Finally, we focus on the first passage time (FPT) problem
of the process through an upper boundary that in the context of
cancer growth can be interpreted as the maximum tumor volume
carried by the host.

The paper is organized as follows. In Section 2 we introduce the
model and we analyze its transition probability density function
(pdf), the related moments and its asymptotic behavior. The rela-
tive entropy is analyzed to study the effect of different therapies
on the distribution of the involved process. In Section 3 a numeri-
cal approach is considered to evaluate the FPT pdf and, for suitable
choices of the boundary, some closed form results for the FPT prob-
lem are considered. Finally, in Section 4 a computational study on
the effect of therapies is performed comparing different models by
means of the relative entropy and the FPT’s.
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2. The model

A Gompertz-type diffusion in which the growth rates are time-
dependent can be used to modeling systems in which the natural
growth parameters are modified by exogenous factors. Let
fXðtÞ; t P t0 P 0g be a diffusion stochastic process characterized
by drift and infinitesimal variance:

A1ðx; tÞ ¼ hðtÞx� gðtÞx ln x; A2ðxÞ ¼ r2x2; ð2:1Þ

respectively. In (2.1) hðtÞ and gðtÞ are positive functions of the time
representing the growth and the death rates modified by an exoge-
nous term, respectively. Moreover, r is a positive constant repre-
senting the width of random fluctuations. The process XðtÞ is
defined in I ¼ ð0;þ1Þ and its sample-paths are described by the fol-
lowing stochastic differential equation:

dXðtÞ ¼ hðtÞXðtÞ � gðtÞXðtÞ ln XðtÞ½ �dt þ rXðtÞdWðtÞ;

where WðtÞ is a standard Brownian motion.
Let Fðx; tjy; sÞ ¼ Pr½XðtÞ < xjXðsÞ ¼ y� be the transition

distribution function and let f ðx; tjy; sÞ be the transition pdf of
XðtÞ, i.e.:

f ðx; tjy; sÞ ¼ @

@x
Fðx; tjy; sÞ ðx; y 2 I; t0 < s < tÞ:

It is solution of the Fokker–Planck equation:

@f ðx; tjy; sÞ
@t

¼ � @

@x
½hðtÞx� gðtÞx ln x�f ðx; tjy; sÞf g

þ @2

@x2

r2

2
x2f ðx; tjy; sÞ

� �
ð2:2Þ

and of the Kolmogorov equation:

@f ðx; tjy; sÞ
@s

þ ½hðsÞy� gðsÞy ln y� @f ðx; tjy; sÞ
@y

þ r2

2
y2 @

2f ðx; tjy; sÞ
@y2 ¼ 0 ð2:3Þ

and it satisfies the initial delta condition:

lim
t!s

f ðx; tjy; sÞ ¼ lim
s!t

f ðx; tjy; sÞ ¼ dðx� yÞ; ð2:4Þ

where dðzÞ is the Dirac-delta function in z.

2.1. Transition probability distribution

In order to find the solution of the Eqs. (2.2) and (2.3)
with the initial condition (2.4), we consider the transformation
(cf. [13]):

~x ¼ kðtÞ ln xþ dðtÞ; ~y ¼ kðsÞ ln yþ dðsÞ;
~t ¼ /ðtÞ; ~s ¼ /ðsÞ;
~f ð~x;~tj~y; ~sÞ ¼ x

kðtÞ f ðx; tjy; sÞ;
ð2:5Þ

with

kðtÞ ¼ exp
Z t

t0

gðhÞdh

� �
;

dðtÞ ¼
Z t

t0

r2

2
� hðhÞ

� �
kðhÞdh;

/ðtÞ ¼
Z t

t0

k2ðhÞdh:

ð2:6Þ

Such transformation reduces the Eqs. (2.2) and (2.3) to the analo-
gous equations for a Wiener process eXðtÞ with drift and infinitesi-
mal variance

B1 ¼ 0; B2 ¼ r2;

respectively. The transition pdf of eXðtÞ is Gaussian with mean ~y and
variance r2ð~t � ~sÞ so, making use of (2.5), one has:

f ðx; tjy; sÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pV2ðtjsÞ

q exp � ln x�Mðtj ln y; sÞ½ �2

2V2ðtjsÞ

( )

ðx; y > 0; t0 < s < tÞ; ð2:7Þ

where

Mðtjy; sÞ ¼ kðsÞ
kðtÞ yþ 1

kðtÞ

Z t

s
hðhÞ � r2

2

� �
kðhÞdh

¼ kðsÞ
kðtÞ y� 1

kðtÞ ½dðtÞ � dðsÞ� ð2:8Þ

and

V2ðtjsÞ ¼ r2

k2ðtÞ

Z t

s
k2ðhÞdh ¼ r2

k2ðtÞ
½/ðtÞ � /ðsÞ� ð2:9Þ

with kðtÞ;/ðtÞ and dðtÞ defined in (2.6). The conditional cumulative
transition distribution is given by

Fðx; tjy; sÞ ¼
Z x

0
f ðz; tjy; sÞdz

¼ 1
2

1þ Erf
ln x�Mðtj ln y; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V2ðtjsÞ
q

264
375

8><>:
9>=>;; ð2:10Þ

where ErfðzÞ ¼ 2ffiffiffi
p
p
R z

0 e�n2
dn is the error function.

2.2. Some statistical indexes

From (2.7) it is easy to obtain the conditional nth moment
(n ¼ 1;2; . . .) of XðtÞ:

E½XnðtÞjXðsÞ ¼ y� ¼ exp nMðtj ln y; sÞ þ n2

2
V2ðtjsÞ

� �
;

so, the conditional mean, the conditional variance and the variation
coefficient are

E½XðtÞjXðsÞ ¼ y� ¼ exp Mðtj ln y; sÞ þ 1
2

V2ðtjsÞ
� �

;

Var½XðtÞjXðsÞ ¼ y� ¼ exp 2Mðtj ln y; sÞ þ V2ðtjsÞ
n o

expfV2ðtjsÞg � 1
h i

;

CV ½XðtÞjXðsÞ ¼ y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½XðtÞjy; s�

p
E½XðtÞjy; s� ¼ expfV2ðtjsÞg � 1

h i1=2
;

respectively. Moreover, one has:

median ¼ expfMðtj ln y; sÞg;
mode ¼ expfMðtj ln y; sÞ � V2ðtjsÞg;

skewness ¼ expfV2ðtjsÞg þ 2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expfV2ðtjsÞg � 1
q

;

kurtosis ¼ expf4V2ðtjsÞg þ 2 expf2V2ðtjsÞg
þ 3 expf3V2ðtjsÞg � 3: ð2:11Þ

2.3. Asymptotic behavior

In many contexts it is interesting to analyze the behavior of
the system for large times. This behavior can be studied via
the steady state pdf of the process. In particular, if the following
limits exist

lim
t!1

Mðtj ln y; sÞ ¼ m; lim
t!1

V2ðtjsÞ ¼ s2; ð2:12Þ
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