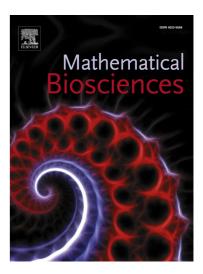
Accepted Manuscript

Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents

Libin Rong, Alan S. Perelson


PII: S0025-5564(13)00122-3

DOI: http://dx.doi.org/10.1016/j.mbs.2013.04.012

Reference: MBS 7355

To appear in: Mathematical Biosciences

Received Date: 12 October 2012 Revised Date: 25 April 2013 Accepted Date: 26 April 2013

Please cite this article as: L. Rong, A.S. Perelson, Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents, *Mathematical Biosciences* (2013), doi: http://dx.doi.org/10.1016/j.mbs.2013.04.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents

Libin Rong[†] Alan S. Perelson^{‡*}

Abstract

Chronic hepatitis C virus (HCV) infection remains a world-wide public health problem. Therapy with interferon and ribavirin leads to viral elimination in less than 50% of treated patients. New treatment options aiming at a higher cure rate are focused on direct-acting antiviral agents (DAAs), which directly interfere with different steps in the HCV life cycle. In this paper, we describe and analyze a recently developed multiscale model that predicts HCV dynamics under therapy with DAAs. The model includes both intracellular viral RNA replication and extracellular viral infection. We calculate the steady states of the model and perform a detailed stability analysis. With certain assumptions we obtain analytical approximations of the viral load decline after treatment initiation. One approximation agrees well with the prediction of the model, and can conveniently be used to fit patient data and estimate parameter values. We also discuss other possible ways to incorporate intracellular viral dynamics into the multiscale model.

1 Introduction

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, liver cirrhosis and liver cancer. Approximately 130 to 170 million people are chronically infected with HCV in the world [1]. A combination of pegylated interferon (PEG-IFN) and ribavirin (RBV) has been used to treat HCV infection but only led to sustained viral elimination in less than 50% of treated patients infected with HCV genotype 1, the major genotype affecting North America and Europe [2]. New

[†]Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309

 $^{^{\}ddagger}$ Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545

^{*}Corresponding author: asp@lanl.gov

Download English Version:

https://daneshyari.com/en/article/6372138

Download Persian Version:

https://daneshyari.com/article/6372138

<u>Daneshyari.com</u>