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We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-
coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic
modification of the standard Hodgkin-Huxley model wherein the delay-coupling accounts for the finite
propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the
Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane
potentials. For an elementary neuronal network consisting of two coupled neurons we detect character-
istic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip
bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-

phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn
cause a striking stabilization of the spiking frequency.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Time-delayed feedback presents a common mechanism which
is found in many biological systems including neuronal systems.
Signal transmission time delays in neuronal systems either result
from (i) chemical processes in the neuronal synapses where neuro-
transmitters are released and diffusively overcome the synaptic
cleft and/or (ii) from the finite propagation speed of electrical exci-
tations along the neuronal axon. Time delays stemming from
chemical synapses are of the order of a few milliseconds, while
the axonal conduction delays in both, delay-coupled neurons and
autaptic feedback loops, reach values up to tens of milliseconds
[1-4].

As the time scale of the delayed coupling and of the neuronal
dynamics become comparable, the delay-coupling gives raise to
peculiar synchronization phenomena [5]. In particular, phase syn-
chronization phenomena in neuronal systems are commonly
thought to be the basis for many biological relevant processes
occurring in the brain [6,7]. Synchrony of neurons from small brain
regions up to large-scale networks of different cortices comes
along with transmission time delays. Theoretical and computa-
tional studies on neuronal networks with delay-coupling recently
highlighted the occurrence of so-called phase-flip bifurcations
[8-10]. The ensemble activity of the coupled neurons change
abruptly from in-phase to anti-phase oscillations or vice versa.

With this work we research this objective by considering the
influence of internal noise. It is an established fact that noise leads
to various prominent effects in neuronal dynamics [11]. Some
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typical examples that come to mind are stochastic resonance fea-
tures [12-15], and noise-assisted synchronization [5,16-18]. With-
in our work the intrinsic noise is due to the stochastic gating of the
ion channels, i.e. the so-called channel noise which is inherently
coupled to the electrical properties of the axonal cell membrane
[19-21]. Interestingly, it has been shown that intrinsic channel
noise does not only lead to the generation of spontaneous action
potentials [22], but as well affects the neuronal dynamics at differ-
ent levels, namely: (i) it can boost the signal quality [14,15], (ii)
enhance the signal transmission reliability [23], (iii) cause fre-
quency- and phase-synchronization features [24-28] and (iv)
may result in a frequency stabilization [29], to name but a few.
The present work is organized as follows: In Section 2 we intro-
duce the biophysical model. We review the standard Hodgkin-
Huxley model and its generalizations with respect to intrinsic
channel noise and a delay-coupling. Numerical methods for simu-
lation are introduced after that. In Section 3, the dynamics of a net-
work of two delay-coupled Hodgkin-Huxley neurons is explored
both, in the deterministic limit and under consideration of channel
noise. As a comparison, we retrospect on the previous work on a
single neuron subjected to a delayed feedback loop resulting from
autapse in Section 4. Our conclusions are given in Section 5.

2. Biophysical model setup

We consider a minimal building block of a neuronal network
composed of two coupled neurons. As an archetype model for
nerve excitation of the individual neuron, we utilize a stochastic
generalization of the common Hodgkin-Huxley model. The
stochastic generalization accounts for intrinsic membranal
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conductance fluctuations, i.e. channel noise, being caused by ran-
dom ion channel gating. Moreover, we account for a delay in the
coupling which accounts for a finite propagation time of the action
potential along the axon.

2.1. Hodgkin-Huxley-type modelling of two delay-coupled neurons

According to Hodgkin and Huxley, the dynamics of the mem-
brane potential V; with i = 1,2 of two coupled neuronal cells is gi-
ven by Hodgkin and Huxley [30]

c%v,- + G (n) (Vi = Vi) 4 Gna(m, h) (Vi = Via) + GL(Vi — V1) = [i(t).
(1)

Here, V; denotes the membrane potential of the i-th cell. The stim-
ulus I;(t) acting on the i-th neuron reads:

Il(t) = Ii. E.‘Xt(t) +If](t)/ 17] = 17271.#.].7 (2)

where the bi-directional delay-coupling of Pyragas-type [31] be-
tween the two neurons is assumed to be linear in the difference
of the membrane potentials of a primary, i-th neuron at time ¢
and a secondary, j-th neuron at an earlier time, ¢t — 7. The coupling
thus reads:

Ii;(0) = K [Vj(t — 7) = Vi(0)], 3)

where x corresponds to the coupling strength and 7 denotes the fi-
nite delay time. The coupling defined in Eq. (3) is of “electrotonic”
type, i.e. we consider an idealized situation wherein the coupling
is proportional to the difference of presynaptic and postsynaptic
membrane potentials. This kind of coupling then corresponds to
so-called gap-junctions which allow the bi-directional transport of
ions and small molecules from one neuronal cell into another. Un-
like the conductance of chemical synapses, the conductance of
gap-junctions is independent of the presynaptic and postsynaptic
membrane potentials and can therefore be modelled by the
constant coupling parameter k. Possible chemical mechanisms
occurring at the synaptic cleft are assumed to be instantaneous as
the time scale for signal propagation along the neuron‘s axon is
much larger than the corresponding one for the transport process
in the synaptic cleft. Note, that the delayed stimulus in Eq. (3) re-
sults in an excitatory coupling mechanism in which the spiking of
neuron i at an earlier time t — 7 time favors the initiation of a action
potential of the other cell at time t.

In addition to the delayed, bilinear coupling current we apply a
constant current stimulus [; e on the neurons, mimicking the com-
mon stimulus of the neuronal environment on the so considered
two-neuron network. In absence of the bi-directional coupling
the dynamics of each neuron exhibits a bifurcation scenario exhib-
iting a subcritical Hopf bifurcation. As a consequence, the membra-
nal dynamics displays (i) a stable fix-point, i.e. the so-called rest
state for l;ex < I =~ 6.26 uA/cm?, (ii) a stable spiking solution for
Liext > I = 9.763 uA/cm? and (iii) a bistable regime for which the
stable rest state and a stable oscillatory spiking solution coexist,
i.e. for I < Iiext < I [32-36]. In particular, for [;exs = 0 the mem-
brane potential is Vet = —65.0 mV.

Throughout this work the membrane potentials are measured
in units of mV and time in units of ms. For a squid giant axon,
the parameters in Eq. (1) read Vy,=50mV, Vgx=-77mV,
VL = —-54.4mV, and C = 1 uF/cm®. Furthermore, the leakage con-
ductance is assumed to be constant, G, = 0.3 mS/cmz. On the con-
trary, the sodium and potassium conductances are controlled by
the voltage-dependent gating dynamics of single ion channels
and are proportional to their respective numbers. In the
Hodgkin-Huxley model [30], the opening of the potassium ion
channel is governed by four identical activation gates, being

characterized by the opening probability n. The channel is open
when all four gates are open. In the case of sodium channel, the
dynamics is governed by a set of three independent and identical
fast activation gates (m) and an additional slow, so-termed inacti-
vation gate (h). The independence of the gates implies that the
probability of the occurrence of the conducting conformation is
Px = n* for a potassium channel and Py, = m® h for a sodium chan-
nel, respectively. In a mean field description, the macroscopic
potassium and sodium conductances then read:

Gr(n) = gg™n®,  Gua(m,h) = gig*m’h, (4)

where g = 36 mS/cm? and gh¥* = 120 mS/cm? denote the maxi-
mal conductances (when all channels are open). The two-state,
opening-closing dynamics of the gates is governed by the voltage
dependent opening and closing rates o, (V) and B,(V) (x =m, h,n),

i.e. [30]

_001(V+55)

(V) = T exp=(V 5 55)/10]" )

B,(V) = 0.125 exp|—(V + 65)/80], (6)
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Bm(V) = 4exp[—(V +65)/18], (8)

o (V) = 0.07 exp[—(V + 65)/20], 9)
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BV) =17 exp[—(V +35)/10]"
Hence, the dynamics of the opening probabilities for the gates read:
x=0ux(V) (1-X)—B(V)x, x=mh,n. (11)

The voltage Eq. (1), Eq. (4) and the rate equations of the gating
dynamics Eqgs. (6)-(11) then constitute the original, strictly deter-
ministic Hodgkin-Huxley model for spiking activity of the squid
giant axon.

2.2. Modelling channel noise

In this study, however, each channel defines a bistable stochas-
tic element which fluctuates between its closed and open states. As
a consequence, the number of open channels undergoes a birth-
death stochastic process. Applying a diffusion approximation to
this discrete dynamics, the resulting Fokker-Planck equation can
be obtained from a Kramers-Moyal expansion [37,38]. The corre-
sponding Langevin dynamics, interpreted here in the stochastic
Ito calculus [39], reads:

& = V) (1 - %) = B(V)x+ (D),
It is driven by independent Gaussian white noise sources &, (t) of
vanishing mean which account for the fluctuations of the number
of open gates. The (multiplicative) noise strengths depend on both,
the membrane voltage and the gating variables. Explicitly, these
noise correlations assume the following form for a neuron consist-
ing of Ny, sodium and Ny potassium ion channels:

x=n,m,h. (12)

(1= m)aty + mfy,

(en)in(e)) = T 1), (13)
E(B& () = %w ), (14)
(] (15)

The fluctuations of the number of open ion channels result in
conductances fluctuations of the cell membrane eventually leading
to spontaneous action potentials. These spontaneous spiking
events occur even for sub-threshold, constant external current
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