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a b s t r a c t

Cluster analysis aims at finding subsets (clusters) of a given set of entities, which are homogeneous and/or
well separated.

Starting from the 1990s, cluster analysis has been applied to several domains with numerous applica-
tions. It has emerged as one of the most exciting interdisciplinary fields, having benefited from concepts
and theoretical results obtained by different scientific research communities, including genetics, biology,
biochemistry, mathematics, and computer science.

The last decade has brought several new algorithms, which are able to solve larger sized and real-world
instances. We will give an overview of the main types of clustering and criteria for homogeneity or sep-
aration. Solution techniques are discussed, with special emphasis on the combinatorial optimization per-
spective, with the goal of providing conceptual insights and literature references to the broad community
of clustering practitioners.

A new biased random-key genetic algorithm is also described and compared with several efficient
hybrid GRASP algorithms recently proposed to cluster biological data.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Cluster analysis aims to group data such that the most similar
objects belong to the same group or cluster, and dissimilar objects
are assigned to different clusters. The objects are also called entities
or patterns and are usually represented as a vector of measure-
ments or a point in a multidimensional space.

Cluster analysis has been applied to several domains, such as
natural language processing [57] (where large vocabularies of
words of a given natural language must be clustered w.r.t. corpora
of very high size), galaxy formation [61] (a study has been
conducted on the formation of galaxies by gas condensation with
massive dark halos), image segmentation [60] (where the segmen-
tation is achieved by searching for closed contours of the elements
in the image), and biological data [5,35,41,43,20].

Starting from one of the pioneering paper of Rao, which ap-
peared in 1971 [45], more recent surveys on clustering algorithms
and their applications can be found in [27,28].

In cluster analysis, the criterion for a clustering to be optimal
strongly depends upon the specific application in which it is to
be used. In the general case, the cluster task can be mathematically
formulated as a constrained fractional non-linear 0–1 program-
ming problem and there are no computationally efficient proce-
dures for solving such a problem. In some variants and special

cases the problem becomes computationally tractable, as deeply
discussed in [45].

The scope of this paper is to provide an overview of the main
types of clustering and criteria for homogeneity or separation. Spe-
cial emphasis is given to the most efficient metaheuristic tech-
niques that can be applied to cluster data and a new biased
random-key genetic algorithm is also described and compared
with several efficient hybrid GRASP algorithms recently proposed
to cluster biological data.

The remainder of this paper is organized as follows. In Section 2,
the cluster analysis task is formulated and the most used distance
measures between the various entities are described. In Section 3,
properties and state-of-the-art solution approaches are discussed.
A new biased random-key genetic algorithm is proposed in Section 4
and computational results are presented in Section 5 demonstrating
empirically that the new described algorithm results in better qual-
ity solutions. Concluding remarks are given in the last section.

2. Problem formulation and distance measures definition

Cluster analysis involves the problem of finding a partition of a
given set of entities into a pre-assigned number of mutually exclu-
sive clusters.

Formally, we are given.

} a set of N objects (entities, patterns) O ¼ fo1; . . . ; oNg;
} a set of M of pre-assigned clusters S ¼ fS1; . . . ; SMg;
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} a function d : O�O#R that assigns to each pair oi; oj 2 O a
‘‘metric distance’’ or ‘‘similarity’’ dij 2 R (usually, dij P 0;
dii ¼ 0; dij ¼ dji, for i; j ¼ 1; . . . ;N)

and the task consists in assigning the objects in O to some cluster in
S. The assignment is done while optimizing some distance criteria
in such a way that the greater is the similarity (or proximity,
homogeneity) within a cluster and the greater is the difference
between clusters, the better or more distinct is the clustering
[25,27].

Pattern proximity (similarity) is usually measured by a distance
function defined on pairs of patterns.

A data object oi; i ¼ 1; . . . ;N, can be formalized as the following
numerical vector

A
!

i ¼ faij j 1 6 j 6 Lg;

where

U aij is the value of the jth feature for the ith data object and
U L is the number of features.

Then, the proximity dij between two objects oi and oj is measured by
a proximity function d of corresponding vectors A

!
i and A

!
j.

Several different scientific communities have used and dis-
cussed a variety of distance measures (see, for example
[6,25,28]). Some of them are listed in the following.

Euclidean distance The Euclidean distance is maybe the most
popular metric for measuring the distance between two data
objects.

Given two objects oi and oj 2 O, their Euclidean distance in L-
dimensional space is defined as

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

k¼1

ðaik � ajkÞ2
vuut ¼ kai � ajk2: ð1Þ

It has an intuitive meaning and it is usually used to evaluate the
proximity of objects in two or three-dimensional space. In general,
it works well when the data set has ‘‘ compact’’ or ‘‘ isolated’’ clus-
ters [36].

Pearson’s correlation coefficient An alternate measure is the
Pearson’s correlation coefficient, which measures the similarity be-
tween the shapes of two patterns (profiles).

Given two objects oi and oj 2 O, their Pearson’s correlation coef-
ficient is defined as

dij ¼
PL

k¼1½ðaik � loi
Þ � ððajk � loj

ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
k¼1ðaik � loi

Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

k¼1ðajk � loj
Þ2

q ; ð2Þ

where loi
and loj

are the mean value for A
!

i and A
!

j, respectively.
This correlation coefficient views each object as a random var-

iable with L observations and measures the similarity between
two objects by calculating the linear relationship between the dis-
tributions of the two corresponding random variables. One draw-
back of the Pearson’s correlation coefficient is that it assumes an
approximate Gaussian distribution of the patterns and may not
be robust for non-Gaussian distributions, as experimentally shown
by Bickel [10].

City-block or Manhattan. City-block or Manhattan distance
simulates the distance between points in a city road grid. It mea-
sures the absolute differences between two object attributes.

Given two objects oi and oj 2 O, their City-block or Manhattan
distance is defined as

dij ¼
XL

k¼1

j aik � ajk j : ð3Þ

Cosine or uncentered correlation. Cosine or uncentered corre-
lation is a geometric correlation defined by the angle between two
objects.

Given two objects oi and oj 2 O, their cosine or uncentered cor-
relation is defined as

Dij ¼
PL

k¼1aik � ajkPL
k¼1a2

ik

PL
k¼1a2

jk

: ð4Þ

Note that,

� the larger is the value of Dij, the lower is the angle between the
objects;
� Dij 2 ½�1;1� : Dij ¼ �1 implies that the angle between vectors

representing oi and oj is a right angle; while Dij ¼ 1 implies that
the angle between oi and oj is 0;
� dij ¼ 1� j Dij j.

3. A review of the most popular clustering techniques

According to Jain et al. [27] (see the taxonometric representa-
tion of clustering methods in Fig. 1), state-of-the-art clustering
algorithms can be mainly divided into two families: partitioning
and hierarchical algorithms.

A partitioning method partitions the set of data objects into
non-overlapping clusters such that each data object belongs to ex-
actly one cluster. Instead, in a hierarchical approach a cluster is
permitted to have subclusters and the result of the clustering task
is a set of nested clusters that can be organized in a tree. Each node
of the tree corresponds to a cluster and it is the union of its chil-
dren (subclusters). Clearly, the leaves have no subclusters and
the root node represents the cluster containing all the objects.

3.1. Hierarchical clustering algorithms

The most popular hierarchical clustering algorithms are the sin-
gle-link algorithm [54], complete-link [32], and minimum-vari-
ance algorithms [30]. The single-link and the complete-link
approaches differ in how they define the similarity between a pair
of clusters: in the single-link approach, this distance is the mini-
mum of the distances between all pairs of patterns drawn from
the two clusters (one pattern from the first cluster, the other from
the second); in a complete-link algorithm, this distance is the max-
imum of all pairwise distances between patterns in the two clus-
ters. In either case, two clusters are merged to form a larger
cluster based on minimum distance criteria.

3.2. Partitioning clustering algorithms

The most popular partitioning clustering algorithms are the
squared error algorithms (among them the most famous is the
k-means method [38]), graph-theoretic algorithms [62], and mix-
ture-resolving and mode-seeking algorithms [25].

Fig. 1. A taxonomy of clustering methods.
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