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a b s t r a c t

This study presents a mathematical model of two species competing in a chemostat for one resource that is
stored internally, and who also compete through allelopathy. Each species produces a toxin to that
increases mortality rate of its competitor. The two species system and its single species subsystem follow
mass conservation constraints characteristic of chemostat models. Persistence of a single species occurs if
the nutrient supply of an empty habitat allows it to acquire a threshold of stored nutrient quota, sufficient to
overcome loss to outflow after accounting for the cost of toxin production. For the two-species system, a
semitrivial equilibrium with one species resident is unstable to invasion by the missing species according
to a similar threshold condition. The invader increases if acquires a stored nutrient quota sufficient to over-
come loss to outflow and toxin-induced mortality, after accounting for the cost of the invader’s own toxin
production. If both semitrivial equilibria for the two-species system are invasible then there is at least one
coexistence equilibrium. Numerical analyses indicate another possibility: bistability in which both semi-
trivial equilibria are stable against invasion. In such a case there is competitive exclusion of one species,
whose identity depends on initial conditions. When there is a tradeoff between abilities to compete for
the nutrient and to compete through toxicity, the more toxic species can dominate only under nutrient-rich
conditions. Bistability under such conditions could contribute to the unpredictability of toxic algal blooms.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Competition is an important interaction between species and has
been studied by generations of ecologists. The development of
mechanistic theory addressing competition for resources was an
important advance [13,29]. In the classical theory of competition be-
tween algal and microbial species for one nutrient resource, there is
a simple generic outcome. The species with the lowest break even
nutrient concentration which balances growth and loss rates will
exclude all other competitors, independent of initial conditions
[17]. Such early versions of resource competition theory assumed
a direct relationship between the external concentration of nutri-
ents and the population growth of microbes, without any intermedi-
ate steps of nutrient storage within cells. The potential complication
of internal storage was soon addressed, with results parallel to those
of classical theory: there is only one outcome, dominance by the
superior nutrient competitor [25,26]. Outcomes such as coexistence
of two or more species, or bistability where outcomes depend on ini-
tial conditions do not occur when species compete for one nutrient,
with or without internal storage, unless additional factors are intro-
duced such as spatiotemporal inhomogeneity (e.g. [9,10,12,18]) or
predators and other natural enemies [30].

The production of toxins that act against competing species,
known as allelopathy, is another factor that potentially influences
competitive dynamics [6]. A common outcome in mathematical
models that combine allelopathy and resource competition is that
bistability occurs under some conditions, when there is a tradeoff
between ability to compete for the nutrient and resistance to the
toxin (e.g. [20,23]). Although available theory addresses some po-
tential complications in the dynamics of allelopathy and resource
competition [21], internal storage of the nutrient is as yet unex-
plored. Important examples of where allelopathy might occur in-
volve toxic algae that produce red tides and similar harmful
blooms [8,19]. Such algae compete for nutrients such as phospho-
rus, nitrogen and iron that are stored within cells [22]. Thus the
study of phytoplankton ecology involves both competition for
nutrients that are stored internally, and competition through
allelopathy.

Motivated by this observation, in this study we weave together
the two threads of competition by allelopathy, and internal storage
of a nutrient for which competition occurs. We analyze a model in
which two species compete for a nutrient that each species con-
sumes and stores. Population growth then depends on the amount
of stored nutrient. Each species also produces a toxin that induces
mortality in the other species, and each species is immune to the
effect of the toxin it produces (i.e. toxin acts between species but
not within species). The model represents the dynamics of the
two species, their amounts of internally stored nutrient, the
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concentrations of the toxins they produce, and the concentration of
the growth-limiting nutrient. The interactions among these com-
ponents are studied in a simple model environment, the well-
mixed chemostat [26]. In this habitat, the growth-limiting nutrient
is supplied at a constant concentration Rð0Þ flowing in at a constant
dilution rate, with a balancing outflow that removes all constitu-
ents. The chemostat serves as a simple model of natural habitats
such as lakes and estuaries, and is also the basis for many elabora-
tions involving spatial or temporal inhomogeneity, or predators
and other natural enemies. But we ignore such complications here
and assume the environment is constant, uniform, and lacks other
species interacting with the focal competitors.

The organization of the paper is as follows. The mathematical
model is described in the next section. In Section 3, we first con-
sider the single population model and state a sharp threshold re-
sult distinguishing between washout of the organism from the
reactor and persistence of the population. Section 4 is devoted to
the study of two competing species model. Necessary conditions
are stated for equilibrium coexistence of the two species model.
Simulation results are collected in Section 5 where competitive
exclusion and bistability (outcomes dependent on initial condi-
tions) are observed. Biological interpretations are presented in Sec-
tion 6. Section A is the Appendix section. Some technical proofs are
collected in this section.

2. The model

The basic model and appropriate hypotheses are stated in this
section. Consider two populations competing for a single nutrient
in the chemostat. The chemostat is supplied with nutrient at a con-
stant concentration Rð0Þ at dilution rate D. There is a compensating
outflow also at rate D of the well-stirred contents of the chemostat.
Let RðtÞ be the nutrient concentration at time t; NiðtÞ be the concen-
trations of species i in the culture vessel respectively, and PiðtÞ be
the concentration of the inhibitor produced by ith population.
For i = 1,2, Q iðtÞ represents the average amount of stored nutrient
per cell of ith population at time t. Then we consider the following
system:

dR
dt¼ðR

ð0Þ �RÞD�q1ðR;Q 1ÞN1�q2ðR;Q 2ÞN2þm12ðP2ÞN1Q 1þm21ðP1ÞN2Q 2;

dN1
dt ¼ ð1�k1Þl1ðQ 1Þ�m12ðP2Þ�D

� �
N1;

dQ1
dt ¼q1ðR;Q 1Þ�ð1�k1Þl1ðQ 1ÞQ 1;

dN2
dt ¼ ð1�k2Þl2ðQ 2Þ�m21ðP1Þ�D

� �
N2;

dQ2
dt ¼q2ðR;Q 2Þ�ð1�k2Þl2ðQ 2ÞQ 2;

dP1
dt ¼k1l1ðQ 1ÞN1�DP1;

dP2
dt ¼k2l2ðQ 2ÞN2�DP2;

Rð0ÞP0; Pið0ÞP0; Nið0ÞP 0; Q ið0ÞPQ min;i; i¼1;2;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2:1Þ

where liðQiÞ is the growth rate of species i as a function of cell quota
Qi;qiðR;QiÞ is the per capita nutrient uptake rate, per cell of species i
as a function of nutrient concentration R and cell quota Qi;Qmin;i de-
notes the threshold cell quota below which no growth of species i oc-
curs. The functions mijðPjÞ describe the mortality effect on species i
from the toxin produced by species j. The constant ki is the fraction
of consumption devoted to the production of the inhibitor. Hence,
0 < ki < 1. In the first equation of system (2.1), the nutrient content
of algal cells killed by inhibitors appears as a positive term, corre-
sponding to the assumption that this nutrient content is recycled
instantaneously. Algal toxins that induce mortality often act by dis-
rupting cell membranes and releasing cell contents to the surround-
ing water [8], so it is reasonable to assume that relatively rapid
recycling occurs, even if it is not instantaneous. Assuming instanta-
neous recycling facilitates the application of a conservation principle
to construct limiting systems in Sections 3 and 4.

The functions mijðPjÞ satisfy

mijðPjÞP 0; mijð0Þ ¼ 0 and m0ijðPjÞ > 0 8Pj P 0: ð2:2Þ

The growth rate liðQiÞ takes the forms [3–5]:

liðQiÞ ¼ li1 1� Q min;i

Q i

� �
ð2:3Þ

or

liðQiÞ ¼ li1
ðQ i � Q min;iÞþ

ai þ ðQ i � Q min;iÞþ
;

where ðQi � Qmin;iÞþ is the positive part of ðQi � Qmin;iÞ and li1 is the
maximal growth rate of the species.

According to [12,22], the uptake rate qiðR;QiÞ takes the form:

qiðR;Q iÞ ¼ qmax;iðQiÞ
R

Ki þ R
;

qmax;iðQ iÞ ¼ q;ihigh
max � ðq;ihigh

max � q;ilow
max Þ

Qi � Qmin;i

Q max;i � Q min;i
;

ð2:4Þ

where Qmin;i 6 Qi 6 Qmax;i. Cunningham and Nisbet [3,4] took
qmax;iðQiÞ to be a constant.

Motivated by these examples, we assume that liðQ iÞ is defined
and continuously differentiable for Qi P Q min;i > 0 and satisfies

liðQiÞP 0; l0iðQ iÞ > 0 and is continuous for Qi P Q min;i;

liðQ min;iÞ ¼ 0: ð2:5Þ

We assume that qiðR;QiÞ is continuously differentiable for R > 0
and Qi P Qmin;i and satisfies

qið0;Q iÞ ¼ 0;
@qi

@R
> 0;

@qi

@Q i
6 0: ð2:6Þ

In particular, qiðR;QiÞ > 0 when R > 0.
To end this section, we briefly mention the following Droop

model without toxins studied by Smith and Waltman [26,27]:

dR
dt ¼ ðR

ð0Þ � RÞD� q1ðR;Q 1ÞN1 � q2ðR;Q2ÞN2;

dN1
dt ¼ l1ðQ 1Þ � D

� �
N1;

dQ1
dt ¼ q1ðR;Q1Þ � l1ðQ 1ÞQ 1;

dN2
dt ¼ l2ðQ 2Þ � D

� �
N2;

dQ2
dt ¼ q2ðR;Q2Þ � l2ðQ 2ÞQ 2;

Rð0ÞP 0; Nið0ÞP 0; Q ið0ÞP Q min;i; i ¼ 1;2:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:7Þ

Note that if we let k1 ¼ k2 ¼ 0 and P1 ¼ P2 � 0 in the system (2.1), it
is easy to see that the system (2.1) becomes the one (2.7). In [26,27],
Smith and Waltman proved that competitive exclusion holds for the
system (2.7), that is, the species that can grow at the lowest nutri-
ent concentration will win the competition.

3. Single population model

In this section, we first consider the single population model
corresponding to (2.1), that is,

dR
dt ¼ ðR

ð0Þ � RÞD� qðR;QÞN;
dN
dt ¼ ð1� kÞlðQÞ � D½ �N;
dQ
dt ¼ qðR;QÞ � ð1� kÞlðQÞQ ;
dP
dt ¼ klðQÞN � DP;

Rð0ÞP 0; Nð0ÞP 0; Qð0ÞP Qmin; Pð0ÞP 0:

8>>>>>>><
>>>>>>>:

ð3:1Þ

with initial values in the domain

X ¼ fðR;N;Q ; PÞ 2 R4
þ : Q P Q ming: ð3:2Þ

It is easy to show that X is positively invariant for the system (3.1).
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