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a b s t r a c t

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and
disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation.
These traditional parabolic models cannot be used to represent experimental measurements of individual
cell velocities within the invading population since they imply that information propagates with infinite
speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity-
jump process where information propagates with finite speed. The model treats the total population of
cells as two interacting subpopulations: a subpopulation of left-moving cells, Lðx; tÞ, and a subpopulation
of right-moving cells, Rðx; tÞ. This leads to a system of hyperbolic partial differential equations that
includes a turning rate, K P 0, describing the rate at which individuals in the population change direction
of movement. We present exact travelling wave solutions of the system of partial differential equations
for the special case where K ¼ 0 and in the limit that K!1. For intermediate turning rates, 0 < K <1,
we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth
monotone travelling waves to smooth nonmonotone travelling waves as K decreases through a critical
value Kcrit. We conclude by providing a qualitative comparison between the travelling wave solutions
of our model and experimental observations of cell invasion. This comparison indicates that the small
K limit produces results that are consistent with experimental observations.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Cell invasion, characterised by moving fronts of cells, is an
essential feature of development [42], tissue repair [20,21] and dis-
ease progression [24,31,41]. Moving fronts of cells can arise in sys-
tems that involve populations of motile cells that proliferate to a
carrying capacity density. The combination of these two processes,
cell motility and carrying capacity-limited proliferation, leads to
invasion fronts that can move into vacant tissues leaving them uni-
formly occupied with cells behind the front.

Standard mathematical models of cell invasion are related to
the Fisher–Kolmogorov equation [11,15], or extensions of the Fish-
er–Kolmogorov equation [4,8,26,27,41,53,54]. The Fisher–Kol-
mogorov equation is a parabolic reaction–diffusion model that
supports travelling wave solutions [5,11,28] thought to represent
constant speed moving cell fronts [20,21,48]. Other approaches
to modelling moving fronts of cells include discrete position-jump
models of cell movement [1,2,4,30,32,33,46,51] which, when com-
bined with an appropriate carrying capacity-limited proliferation
mechanism [4,44,48], can lead to invasion wave behaviour [45].

Advances in microscopy and imaging technologies mean that
experimental measurements of cell invasion are becoming increas-
ingly detailed and it is now possible to make measurements of the
speed of individual cells within a bulk population of cells. For
example, Britto [3] measured the speed of individual neurons with-
in a population of neurons during development, comparing indi-
vidual cell speed measurements in both wild-type and mutant
mouse models. Kulesa [16] used detailed time lapse images within
a developing mouse embryo to measure the speed of individual
neural crest cells within an invading population with the aim of
exploring whether the cell speed was related to the location of
the cell. Nishiyama [29] also used time-lapse images to study indi-
vidual neural crest cell movement within a developing mouse em-
bryo and part of their study measured the velocity of individual
cells. Similarly, Druckenbrod and Epstein used time-lapse images
to study individual neural crest cell movement within an invasive
population [9]. Druckenbrod and Epstein found that cells well be-
hind the leading edge of the invading population were relatively
immobile whereas cells at the leading edge tended to move in
the same direction as the invading population [9]. Unfortunately,
standard reaction–diffusion partial differential equations (PDEs)
can not be used to make predictions of the speed of individual cells
since these parabolic models imply that information propagates
with infinite speed [50] even though information propagates with
finite speed in the corresponding discrete position-jump process.
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To overcome this limitation of parabolic models, we will con-
sider the continuum-limit PDE description of a discrete random
walk model known as a velocity-jump process in which informa-
tion propagates with finite speed [7,12–14,30]. Briefly, the discrete
process in one-dimension involves considering a total population
of cells to be composed of a subpopulation of left-moving cells
and a subpopulation of right-moving cells [49]. Discrete simula-
tions can be performed on a regular lattice with lattice spacing
D. During each discrete time interval, of duration s, each agent is
given the opportunity to undergo a displacement of vs with prob-
ability Pm, where v is the agent velocity. This means that left-mov-
ing agents will attempt to step a distance �vs, and right-moving
agents will attempt to step a distance of þvs. Agents are permitted
to change velocity with probability Pt per time step so that left-
moving agents can convert into right-moving agents, and right-
moving agents can convert into left-moving agents. Setting Pt ¼ 0
gives purely ballistic motion, setting Pt � 1 gives persistent mo-
tion with occasional changes in direction, whereas setting
1� Pt � 1 gives essentially persistence-free motion. Agent prolif-
eration can be incorporated by allowing each agent the opportu-
nity to produce a daughter agent with probability Pp per time
step [50]. Other approaches are related to velocity-jump models,
such as Carleman models [6,19,37], since these models also incor-
porate two different kinds of discrete particles that can move at
different velocities and interact with each other in some way.

Traditional velocity-jump models ignore crowding effects so
that multiple agents are permitted to reside at the same location
in space and agents are permitted to step across other agents
[7,10,12–14,55]. For applications in cell biology, cells have a finite
size and do not occupy the same location in space [47]. Motivated
by this observation, we previously introduced crowding effects
into existing discrete velocity-jump models so that each lattice site
could be occupied by, at most, only one agent [49]. We modified
the usual motility and proliferation mechanisms to ensure that po-
tential motility and proliferation events that would place more
than one agent per site were aborted, and we showed that the
resulting PDE description of these interacting velocity-jump pro-
cesses is different to the usual PDE description of noninteracting
velocity-jump models without crowding effects [49]. In particular,
we showed that the governing PDEs for the proliferative velocity-
jump process with crowding effects appears to give rise to solu-
tions with moving fronts that tend to travelling waves as time in-
creases [50].

Our aim in this work is to describe travelling wave solutions of a
set of PDEs that can be used to describe cell invasion. We begin
with the PDE models derived previously for an interacting veloc-
ity-jump model with proliferation [49,50]. The travelling wave
solutions are presented for three cases: (i) Case 1, no turning (ii)
Case 2, fast turning, and (iii) Case 3, intermediate turning rates.
We analyse the governing system of PDEs using a combination of
exact and numerical techniques, and we catalogue a range of trav-
elling wave solutions that includes a transition from smooth
monotone travelling waves to smooth nonmonotone travelling
waves. The PDE solutions are quantitatively compared with several
properties of the corresponding heteroclinic orbits in the phase
plane. We conclude by comparing our travelling wave results with
experimental observations of cell invasion. This qualitative com-
parison indicates our velocity jump model with small turning rates
leads to travelling wave solutions that recapitulate several key as-
pects of the experiments.

2. Partial differential equation model

Our previous work described a discrete model of a proliferative
velocity-jump process with crowding effects [50]. In one dimen-

sion, we showed that the system of PDEs governing this process
is given by

@R
@t0
¼ �v @

@x0
Rð1� SÞ½ � þ kðL� RÞ þ hR 1� Sð Þ; ð1Þ

@L
@t0
¼ þv @

@x0
Lð1� SÞ½ � þ kðR� LÞ þ hL 1� Sð Þ; ð2Þ

where Lðx0; t0Þ is the density of left-moving cells, Rðx0; t0Þ is the den-
sity of right-moving cells and Sðx0; t0Þ ¼ Lðx0; t0Þ þ Rðx0; t0Þ is the total
cell density. The parameters in the system of PDEs are the cell
velocity v, the turning rate k and the proliferation rate h. These
parameters are related to the parameters in the corresponding dis-
crete process, Pm, Pt and Pp, respectively [50].

The systems of PDEs, Eqs. (1) and (2), correspond to the contin-
uum-limit description of a proliferative velocity jump discrete pro-
cess. In brief, this system involves a population of agents on a one-
dimensional lattice with lattice spacing D. The population is com-
posed of a left-moving subpopulation and a right-moving subpop-
ulation. Motility events take place by allowing agents to move at
some velocity, and crowding effects are incorporated into the sys-
tem by allowing, at most, one agent to occupy each lattice site. This
motility mechanism leads to the nonlinear flux terms in Eqs. (1)
and (2) in the limit that D! 0 and s! 0, where s is the time step
in the discrete model. Agents also undergo turning events whereby
left-moving agents convert into right-moving agents, and right-
moving agents convert into left-moving agents with some speci-
fied probability per time step. These turning events lead to the
source terms in Eqs. (1) and (2) that are proportional to k. Agents
in the discrete model also undergo proliferation events with some
specified probability per time step. A proliferative agent at some
site will attempt to deposit a daughter agent at a nearest neigh-
bouring lattice site provided that the target site is vacant. The pro-
liferation events in the discrete model give rise to the source terms
in Eqs. (1) and (2) that are proportional to h. More detail of the dis-
crete mechanism and the derivation of the PDE description is pre-
sented in our earlier work [50].

To simplify the dimensional governing equations, Eqs. (1) and
(2), we introduce the nondimensional variables t ¼ t0=T and
x ¼ x0=X, with T ¼ 1=h and X ¼ v=h to obtain,

@R
@t
¼ � @

@x
Rð1� SÞ½ � þKðL� RÞ þ R 1� Sð Þ; ð3Þ

@L
@t
¼ þ @

@x
Lð1� SÞ½ � þKðR� LÞ þ L 1� Sð Þ; ð4Þ

where we have only one dimensionless parameter, K, which repre-
sents the ratio of the turning rate to the proliferation rate, K ¼ k=h.

For a typical application of Eqs. (3) and (4) to describe some
experimental observations, such as a scratch wound assay
[4,20,21], we would consider applying the PDE model on a finite
domain with an initial condition describing some region of the do-
main initially containing cells, say Sðx;0Þ ¼ 1, and the remainder of
the domain being vacant, Sðx;0Þ ¼ 0. As our focus is to observe
travelling wave solutions, we instead consider an infinite domain
�1 < x <1 and apply initial conditions of the form,

Lðx;0Þ � 0; Rðx;0Þ ¼
1; x 6 0;
expð�nxÞ; x > 0;

�
ð5Þ

where n > 0 is a constant. This initial condition represents a dense
mass of right-moving cells for x < 0 whose concentration decays
exponentially fast in the positive x-direction. Regardless of K, our
numerical solutions of Eqs. (3) and (4) with (5) evolve so that a front
of right-moving cells moves in the positive x-direction, tending to
travelling waves as t !1. For K > 0, a similar behaviour is ob-
served for the Lðx; tÞ subpopulation. We note that while Lðx; tÞ rep-
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