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a b s t r a c t

This paper develops an optimal control framework for an ordinary differential equation model to
investigate the introduction of sterile mosquitoes to reduce the incidence of mosquito-borne diseases.
Existence of a solution given an optimal strategy and the optimal control is determined in association
with the negative effects of the disease on the population while minimizing the cost due to this control
mechanism. Numerical simulations have shown the importance of effects of the bounds on the release of
sterile mosquitoes and the bounds on the likelihood of egg maturation. The optimal strategy is to
maximize the use of habitat modification or insecticide. A combination of techniques leads to a more
rapid elimination of the wild mosquito population.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper develops a model for the controlled release of sterile
insects into an environment where there is an existing population
of wild insects. We will also consider the effect of controlling
fecundity by altering the environment in such a way that breeding
rate is reduced. This activity would take the form of reducing the
locations for breeding though removing sources of standing water
and of using larvicide or ovacide. We will not consider broad spec-
trum insecticides because these would also kill our sterilized in-
sects. There has been success in using traps for male insects
along with sterile insect release [18], however, we will not con-
sider this third control method in this paper.

The importance of controlling mosquito populations is hard to
overstate. It is well known that such diseases as yellow fever, den-
gue fever, epidemic polyarthritis, Rift Valley fever, Ross River Fever,
St. Louis encephalitis, West Nile virus, Japanese encephalitis,
LaCross encephalitis, and malaria are carried and transmitted by
mosquitoes, [12,26,29,30,34,39,41,42].

This paper considers a model that can applied to many insects,
including mosquitoes. Optimal control theory is then applied with
a variety of cost functionals to find the best strategy for reducing
insect population at minimal cost.

The sterile insect technique was introduced by Knipling [17,18].
The insects are sterilized by irradiation or the application of chem-
ical agents and released to mate with the wild insects. It was used
successfully for the screw worm in the late 1950s and early 1960s
and great hope was held for using the technique for the control of
mosquito populations [19]. Unfortunately, experiments that were
carried out with mosquitoes during the same period met with less
success. For a discussion of the experimental work in this area see
[9,28,38,4].

A number of authors have developed mathematical models
of the interaction between sterile and wild mosquitoes, [17,22,
3,31]. Some sterile release models have been explicitly connected
to particular diseases [7,8,40]. Dumont and Tchuenche [7] consider
pulsed sterile release and demonstrate through equilibrium analy-
sis and simulations that frequent small bursts of sterile insects are
more effective than larger less frequent releases. Esteva and Yang
[8] apply optimal control methods to the rate of introduction of
sterile mosquitoes. An approach developed in [40] attempts to con-
trol both breeding rates and the rate of introduction of sterile mos-
quitoes. No bounds have been imposed on the control (s) in any of
this work which may be not be realistic biologically.

The use of transgenic insects was developed after the sterile
insect technique. Insects carrying a dominant lethal gene are
introduced into the population. Alphey et al. [1,2] provide many
details of the use of both of these techniques. Models that
described the interactions of wild and transgenic mosquitoes
include those by Li [23,24] and Diaz et al. [6]. Optimal control
methods are applied to the rate of introduction of transgenic mos-
quitoes by Rafikov et al. [35,36].
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It is our hope that by developing new bounded control models
for this technique, we may find strategies that will make it more
effective.

1.1. The model

We are particularly interested in Li’s model of the release of
transgenic mosquito populations [24]. Although our focus is on
sterile mosquitoes, we will follow the approach in the referenced
paper for the model we develop here because it captures the fea-
tures we seek to incorporate. We consider a population of wild
mosquitoes, u, and a population of sterilized mosquitoes, w. If
b u;wð Þ is the birth rate of the wild mosquitoes and du u;wð Þ and
dw u;wð Þ are the death rates of the wild population and sterilized
population respectively, we obtain

du
dt
¼ u b u;wð Þ � du u;wð Þð Þ

dw
dt
¼ �wdw u;wð Þ þ S tð Þ

where S is the release rate of sterile mosquitoes. We will assume the
death rate has a constant component and a component that in-
creases with total population density. Thus we will have

du u;wð Þ ¼ M þ K uþwð Þ
dw u;wð Þ ¼ M þ K uþwð Þ

where the equality of the constants is an implicit assumption of
equal fitness between the wild population and the sterilized popu-
lation. We now turn our attention to the birthrate, bðu;wÞ.

Continuing to follow the approach in [24], we let cðu;w; tÞ be
the number of matings that occur per unit time. Therefore, we
can expect that the number of matings of wild type to wild type
will be

bðu;wÞ ¼ cðu;w; tÞ u
uþw

This will give us

du
dt
¼ u cðu;w; tÞ u

uþw
�M � K uþwð Þ

� �
dw
dt
¼ �w M þ K uþwð Þð Þ þ S tð Þ

Let us consider a couple of choices for the function cðu;w; tÞ. When
the total population is large, we expect that mosquitoes will have
no difficulty finding a mate, giving us cðu;w; tÞ as a function only
of time, AðtÞ which is the product of such factors as the likelihood
of a mating producing eggs, the (fixed) proportion of the population
that is female, the likelihood that an appropriate place can be found
so that when the eggs are laid they will hatch, and so on. AðtÞ can be
reduced through the application of larvicide or insecticide, the
clearing of breeding sites, etc. Henceforth, we will generally refer
to such habitat modification as the application of insecticide, with
the understanding that habitat modification can have other
features. The function AðtÞ will serve as a control as well as S, since
we are assuming we can take action to reduce the amount of suit-
able real estate for successful egg laying. This gives the following
model

du
dt
¼ u

AðtÞu
uþw

�Mu� K uþwð Þ
� �

dw
dt
¼ �w Mwþ K uþwð Þð Þ þ S tð Þ

When the population is relatively small, we expect the law of mass
action to be pertinent with cðu;w; tÞ ¼ AðtÞ uþwð Þ where the func-
tion AðtÞ is similar to the function AðtÞ described above. This gives us

du
dt
¼ u AðtÞu�M � K uþwð Þð Þ

dw
dt
¼ �w M þ K uþwð Þð Þ þ S tð Þ

We are particularly interested in a function that can capture the
dynamics of both large and small populations simultaneously. We
seek a functional form that will lead to approximately the models
above. Once again, we follow the work of Li [24] and choose a Hol-
ling-II-type functional response, [15]. Fixing a positive constant
e > 0, we set

c u;wð Þ ¼ A
uþw

eþ uþw

giving us

du
dt
¼ u

Au
eþ uþw

�M � K uþwð Þ
� �

dw
dt
¼ �w M þ K uþwð Þð Þ þ S tð Þ

We now rescale, letting u ¼ u
e and w ¼ w

e . Setting a ¼ A, l ¼ Me,
g ¼ Ke, and s ¼ S

e yields our final model,

du
dt
¼ u

au
1þ uþw

� l� g uþwð Þ
� �

ð1Þ

dw
dt
¼ �w lþ g uþwð Þð Þ þ s tð Þ: ð2Þ

where the initial conditions are

uð0Þ ¼ u0; wð0Þ ¼ w0 ð3Þ

and the controls are bounded with M1;M2;N1;N2 P 0 such that

M1 6 aðtÞ 6 M2; N1 6 sðtÞ 6 N2: ð4Þ

The rest of this paper is organized as follows. In Section 2 we estab-
lish basic facts about the ODE model. In Section 3, we obtain the
existence of an optimal control pair a; sð Þfor different objective
functionals. In Section 4 we implement the forward–backward
sweep method for each of our cases to obtain numerical results.
Finally, in Section 5, we provide discussion of our results and their
implications for the optimal control of mosquito populations.

2. Existence

In this section we will obtain the existence, uniqueness, non-
negativity, and boundedness of solutions to our model in a single
theorem.

Theorem 2.1. For nonnegative initial conditions, the model (1), (2)
has a unique solution which exists for all time and is nonnegative in
each component.

Proof. Local existence for the system is standard as in [27]. To
obtain the result, we first define supersolutions u1 and w1 as in

du1

dt
¼ u1ða� gu1Þ

dw1

dt
¼ N2 � gw1:

These supersolutions are bounded on a finite interval. Hence, via a
comparison result [33], we have that u and w are bounded above on
their interval of existence. Moreover, we can let u2 and w2 represent
subsolutions of the following system,

du2

dt
¼ �Ku1

dw2

dt
¼ �Kw2:

where K is a sufficiently large constant. Therefore, we obtain that u
and w are bounded below by zero. Consequently, with the coeffi-
cients of our original system (1), (2) being bounded, we obtain that
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